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FOREWORD

Going back in time to around 2225 B.C., one finds that the Babylonians
made contributions to the art of computing. Their computing techniques
were based on tables. They made tables of square and cube roots. One of
the remarkable features of their arithmetic is that they did not insert

the decimal point. So In a certain sense they employed floating point
arithmetic. Since the time of the Babylonians many of the civilizations
that came into being had little need for elaborate computing systems.

This Is certainly not the case for people living today. Computers have
become a permanent part of our lives, and electronic digital computers

have taken over a large portion of the work formerly done by human beings.
Up to 1914, the beginning of the first world war, people seldom encountered
astronomical figures In thelr daily work. Now, reference to such numbers
as milllons and billions appear In our dally newspapers. It Is a fact of
life today that we have to take refuge In machinery to handle the elaborate
computations that commonly occur in sclence and engineering problems. Methods
to treat some of these problems were discussed in papers presented at this

;ymggslum.

The Seventeenth Army Numerical Analysis and Computers Conference was held

at the NASA Ames Research Center, Moffett Field, California on 20-21

February 1980. The co-hosts of this meeting were NASA Ames Research Center
and the Aeromechanics Laboratory of the Army Aviation Research and Development
Command. Drs. Irving C. Statler and James Wong served as co-chalirmen of the
Local Arrangements Committee. The Army Mathematics Steering Committee (AMSC),
sponsor of these conferences, would 1ike to thank these gentlemen and their

assistants for all their efforts In making this an interesting and productive
scientific meeting.

The theme for this year's conference was ''Computation of Fluid Flows
Especlally Ilnvolving Shocks and Discontinuities'. The computational

-difficulties as well as analytical treatments arising in these areas lead

to Interesting but:troublesome problems. Some of the papers presented at
this meeting shed light on many of these.problems. The list of invited
speakers and the title of their addresseés-are noted below:

‘

Speakers and Affiliation 7 ' Title of Address

James Glimm The Accurate Computation of Fluid
The Rockefeller University , Discontinuities by the Random Choice
~ Method
T. L. Holst An Implicit Algorithm for Solving the
NASA-Ames Research Center " Transonic, Conservative Full Potential
Equation




8jorn Engquist
University of California-
Los Angeles

. Jerry S. South, James D.
4 Keller and Mohamed Hafez
! NASA-Ames Research Center

Paul R. Garabedian
Courant Institute of
Mathematical Scliences

Members of the AMSC would like to express their appreciation for all the
work expended by the speakers on preparing their papers and then presenting
them at this meeting. Most of these papers are being issued In these
Proceedings as an ald to the sclentific community. The AMSC members would
also llke to thank the hosts of this conference for providing excellent
classroom facilities as well as projection equipment. These enhanced the

. comfort as well as the appreciation of members of the audience for the
scientific Ideas being presented by the speakers.

Software for Hyperbolic and Parabolic
Differential Equations

Computational Transonics on a Vector
Computer

Suppression of Shocks on Swept Wings
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A SHOCK TRACKING METHOD FOR HYPERBOLIC SYSTEMS

James Gh’mmléz6 3.4.5

Dan Marchesin i Oliver McBryan ~*"°

E1i Isaacson Courant Institute
The Rockefeller University New York University
New York, N.Y. 10021 New York, N.Y. 10012

ABSTRACT. We present a method for tracking shock discontinuities in hyper-
bolic systems. We apply the method to the problem of two phase flow in a porous
medium, but the method is general and should be applicable to a wide range of
phenomena including gas dynamics. The method is tested on an exactly soluble
two-dimensional problem and is found to be very accurate. We also study a range
of unstable flow problems with and without heterogeneity of the porous medium.

In the case that the medium is heterogeneous, fingered shock fronts are computed
and tracked. Miscible flows are studied with mobility ratios in the range 1 to 50.

INTRODUCTION.  The random choice method originally developed as a theoreti-
cal tool [1], appears to be the best method for the computation of discontinuous
solutions of nonlinear conservation laws in one space variable [2,3]. It allows
calculations with zero diffusion. The method has been applied successfully to
a number of problems including gas dynamics, chemical reactions (e.g., flame
propagation), petroleum reservoir engineering, and the stability of boats against
capsize.

The use of this method in two dimensions is still a research problem since
numerical experiments yield mixed results. In order to extend the method from
one to two dimensions, Chorin [3] used splitting in the two space directions.
This extension has been applied by Chorin and Sod [4,5) to the flame chemistry
and gas dynamics in an internal combustion engine. However, Colella [6] has observed
that, in general, fluid discontinuities oblique to the computational grid are not
resolved correctly by splitting. A similar phenomenon has been observed in appli-
cations to petroleum reservoir engineering in previous papers of this series [7,8].
A careful choice of computational grid can largely overcome this problem. Complex
and highly fingered solutions are thus resolved [7,8].

The idea of a carefully chosen computational grid can be carried one step fur-
ther. We present our preliminary results on a two-dimensional method which includes
tracking of the discontinuity surface. Related ideas were previously proposed
and tested for one space dimension [9]. Similar concepts (related to Huyghens
Principle) have been developed and used by Chorin [10].

Unlike earlier shock fitting methods [11], we seek only first order accuracy.
Low order methods are inherently easier to stabilize, and a careful elimination of
the leading errors yields satisfactory results on coarse or moderate sized meshes.
Our method seems fairly general; we believe that its scope is not limited to the
petroleum reservoir applications tested so far.

The equations of two phase flow in porous media have the form
Sy + div vf(s) = 0, (1)
-k(s) grad p, (2)

v

div v = source terms, (3)

e Mdme e,
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where we have neglected the dispersive, or parabolic, term associated with
molecular diffusion and/or capillary pressure. Here s denotes the saturation
(fraction of water or solvent in the total fluid), and p is the pressure in

the fluid. Also, k and f are known functions of saturation (and perhaps
position) which describe the permeability and porosity of the reservoir and the
viscosities of the two incompressible phases flowing in it. We solve the system
4 (1)-(3) in a square domain with Neumann boundary conditions on p and with the

' source terms in (3) given by delta functions of opposite sign at diagonally op-
: posite corners of the square. This corresponds to injection of an incompressible
fluid into the square at one corner, with a corresponding outflow at the opposite
cormer. For simplicity we will present results here only for the case of mis-
cible displacement. We will take the corresponding reservoir functions to be:

f(s)
k{s)

where u is the ratio of the viscosity of oil to the viscosity of solvent.
Actually the absence of diffusion and the choice of Cauchy data imply that

s =0 and s =1, at each point, and so the particular phenomenological function
k(s) chosen above, which specifies the viscosity of a mixture of two fluids in
terms of the viscosities and proportions of the components, does not enter into
the calculations. Similar results have been obtained for immiscible flows, with
f(s) a function with one point of inflection between 0 and 1.

S»

(s + w4 (1-))4,

As in [9], the discontinuous solution s(x,y,t) of the hyperbolic conserva-
tion law is described at time t by

sa(x,y,t) if x,y is ahead of the front
s{X,yst) =

waal g
——— e -

Lfb(x’y’t) if x,y is behind the front.

We imagine the functions s, and s; extended continuously across the front to

their unphysical regions, making s double valued. Thus the front may be thought
of as a cut in a Riemann surface joining the physical regions of Sa and sp. Cauchy
data are then specified at time O by setting s_ = 0 everywhere, and also s = 0
except in a small region surrounding the injectioﬂ well where sp = 1. The shock
front is initialized at time zero by specifying a set of (ordered) points on it. The
front is defined to be the piecewise linear curve which connects the points in order.

n In order to update the numerical solution at each time step, we proceed as
follows:

1. Advance the Front: This consists of two parts. First, we find the new

! position of the front using the ordinary differential equations describing the charac-
{ teristics of the hyperbolic equation. Second, we modify s, and s, 1in a neighbor-

| hood of the discontinuity in order to pass any waves genera%ed by Qhe advancing front.

i 2
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These waves typically arise fron non-convex conservation laws. (For a problem in-
volving more state variables, we believe that waves crossing the shock can, and
must, be passed between s, and sy at this stage by a similar method.) To modify
S, and S? we solve one-dimensional Riemann problems along the characteristics.
Tge modification of s, and s, does not involve dynamical motion of these waves
-- other than the motion of tRe front itself.

2. Extrapolate S, and Sp, * Both S, and s, are extended continuously
across the new position of the front to their unphysical regions.

3. Redistribute the Points Describing the Front: This is done to ensure

that the portions of high curvature are resolved and that the spacing of the points
is fairly uniform.

4. Update Sa and sp: We use the splitting version of the random choice
method, even though any convenient first order method could be employed.

5. Update the Elliptic Equation: See [8]. We still use the rectangular
grid in a neighborhood of the front. We believe that this is the cause of the

leading errors which remain. Refining the mesh near the front should eliminate
these errors.

RESWLTS. In order to test the validity of our tracking methods we have applied
them to a problem with a known exact solution. The equations (1) - (3) are exactly
solvable in the case that the velocity equation is independent of the saturation,
i.e. if y = 1. As has been pointed out by Albright, Concus and Proskurowski [12],
the equaeéons may be transformed to a new coordinate system in which the flow is
essentially one-dimensional. In Figure 1 we present the results of our computations
for this problem on a 20x20 grid. We have superimposed the exact solution computed
at the same times. Figure 1 corresponds to a miscible displacement problem with

, f(s) =s. Thus the fluid consists of either pure solvent or pure 0il with no rare-

! faction waves, so plotting the front at a given time describes the whole solution.

L Similar results apply to the more general case where f(s) is a function with one

: point of inflection. The agreement with the exact solution is in general very good

: except that in the area of the production well the computed solution moves somewhat
too slowly. We have not attempted to use the known asymptotic form of the velocities
in this region, which would presumably give a better solution. In Table I we com-
pare the total area behind the front at several times for the exact and computed
solutions on a 20x20 grid. There is agreement to within a few percent.

Table I: Comparison of Exact and Computed Solutions

Time Exact Solvent Present Computed Solvent Present
.0 .0 .0
.500 .129 .125
.806 .207 .202
1.035 .265 .259
1.208 .309 .302
1.505 .384 .376
2.016 .513 .504
2.349 .596 .587
2.884 .729 .721
3
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The computation described above is principally a test of the front tracking :
method because, since k(s) =1, the coefficients of the elliptic equation are |
constant. Thus no errors are introduced in the elliptic step due to lack of mesh |
refinement near the front.

We have also applied our front tracking method to problems where the ellip-

K tic equation is not trivial. In general, the permeability function k(s) changes
L * by a factor of 1 in crossing the front. Therefore the errors introduced dur- 1
! ing the elliptic step increase with u. For large u, we believe that a more ‘

accurate solution of the elliptic problem near the front would improve the method. ‘
{ For simplicity, we again discuss only the case of miscible displacment. We pre- !
\ sent examples where the oil to solvent viscosity ratio u is 2,5 and 50, and
in the latter case we also study the case where the permeability function is gi-
ven an explicit spatial dependence.

Figure 2 shows successive fronts for two different grids superimposed, when
the oil-solvent viscosity ratio is 1 = 2. The agreement between the results
for the two grids is good. Fingered solutions for a heterogeneous reservoir with
U =2 were obtained by an earlier method [8]. Figure 3 shows that tracking
allows the computation of the mathematical solution in the extreme unstable re-
gime of large viscosity ratios - here ¥ = 50. This region was beyond the reach
of the methods presented earlier in [8]. The viscosity ratio in Figure 4 is the
same as that in Figure 3, but the permeability has been given an x-y dependence;
specifically, it has a log-normal distribution. Figure 5 is similar, except that
the length scale of the x-y dependence in the log-normal distribution has been
increased. In both cases, fingering of the solution is observed. Figures 6(a) -
6(g) depict the evolution of fingers and of the associated velocity fields in the
heterogeneous reservoir of Figure 5.

In Table II we present details of the amount of oil recovered at breakthrough
in various cases, as well as some comparisons to experiment [13].

Table II: 0il Recovery at Breakthrough - Miscible Displacement.

s e
=
"
—
=
]

=2 u=5
| Experiment .667 .59 .46
i 10x10 grid .752 .657 .548
20x20 grid .731 .656 .503
Exact Solution .723 - -
i
j
4
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Figure 1

Miscible displacement, with egual viscositles. The exact solution and computed

solution from a 20x20 grid with front track ing are 7lotted at equsl times.
solution has moved faster along the boundary and siover st the tip.

The computed




fi~vre 2
Miscible disolacement with o0il solvert viscositv ratio "o/"s =2.
The solution is coimouted with front tracking and plotte3d at successive
time intervals, for a 10 x 10 ani 20 x 20 orid. The coarse qrii (10 x 10)
solution 1s slichtlv in advance of the fine arid solution at each time sten.

(This solution is unstabdle ans is nct duplicated exaersﬁentnliv.)
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Miscible disnlace~ent “idth 01l solvent viscosity ratio "o"“s = 30, !
) comnuted with Zront tracking ant s ho ioteneous reservoir on a 10 x 10
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Figure 4
Miscible displacement; solvent displacing oil, with & viscosity ratio uolus « 50. The
solution vas computed on a 25x25 grid vith front tracking. The reservoir vas heterogeneous
with log permeadility normally distributed with s variance of .5 .
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IMPLICIT POTENTIAL METHODS FOR THE SOLUTION OF TRANSONIC ROTOR FLOWS

F. X. Caradonna
Aeromechanics Laboratory
U.S. Army Research and Technology Laboratories (AVRADCOM)
Ames Research Center, Moffett Field, California 94035

J. L. Steger
Flow Simulations Inc.
Sunnyvale, California

" ABSTRACT. Two implicit potential methods capable of solving transonic
rotor flow problems are developed. One method is a small disturbance tech-
nique with a general unsteady applicability. The other method is an unsteady
full potential technique which maintains conservation by an appropriate
expansion of the density. The two methods are compared for various test com-
putations. Three-dimensional computations are also made and compared to actual
rotor pressure data.

1. INTRODUCTION. Transonic flow is a common occurrence on modern heli-
copter rotors and often defines the performance limits of these machines. This
flow can be quite complex, as the blade in forward flight encounters a rapidly
varying Mach number, incidence, and sweep angle, and must often interact with
various portions of its own wake. In addition, strong shocks can result in a
high-speed stall. Even in the absence of separation effects, the shock motion
and blade loadings are difficult to predict under these conditions. These
problems are notoriously difficult to study experimentally and the numerical
simulation of rotor flows becomes quite attractive. The potential flow approx-
imation is the simplest model capable of simulating high-speed rotor flows.
This paper describes two potential methods for simulating these flows — one,

a small disturbance and the other a full potential method.

2. SMALL DISTURBANCE METHOD. The small disturbance equation is derived
from the mass conservation and Bernoulli's equation,

a—p- . i =
3t + v (pU) =0 1)
1/y-1
e lh_x-1(e U0
o[ ) @

To derive a simplified equation suitable for high-speed rotor use, the
above equations are recast in a blade fixed coordinate system. The resulting
equation is made dimensionless, scaled, and the transonic small disturbance
assumption [(1 - Mz)/12/3 = 0(1)] is imposed (see ref. 1 for a detailed discus-
sion of the derivation). The resulting equation written in conservation form

is

=F _+9,, +Co +D¢ (3)

Adyy * BO yy ¥ Dxy

Xy
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where
¢ = o/qRer?/?
A = M2e2/72/3

B

ZMZE:f/'rzls

D = Bg
f=y+ucosy
g =xc + usiny

C = ¢2/72/3
= Lo £M e -Y+—1)f¢ + (v - 1)ed |6, chordwise flux t
<2/3 x 2 % Y e¢w x® chordwise flux term

u = QR/V,, rotor advance ratio

M = QR/a,, tip Mach number

e = ¢/R, inverse of blade aspect ratio
y = Qt, blade azimuth
T = blade thickness ratio

and x = x/c, z = Etllzlc, and y = y/R (barred quantities are dimensional
quantities). Note thkat, in the above equations, the inverse aspect ratio plays
the part of a reduced frequency.

Equation (3) will be solved by an implicit finite difference method.
Before proceeding to discretize Eq. (3), it is first necessary to time-
linearize the nonlinear flux term, F, to avoid a costly iteration process at
each time step. That is, let

n+1 n oF n n+1 n oF n n+l n
P @) ) G B ) @

This time-linearized flux is differenced at each midcell of the computational
grid as

n ¢l\"‘l _ n ¢ n _ ¢ﬂ.'-l
. S 4 A N S S £ W S
141/2 ~ “t4r/2 T Tae ) °1 AX 2,/ ® Ay ’
(5)
n n n-1 n
i+1/2 2/3 Ax 2 Ax Ay Ax
20
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where the difference & is defined in terms of the shift operator as

and

4 2 n 2 _ n-1
‘ 2/3 Ax Ay :

0, -

B\ M2(y - 1)esi¢i“
3¢¢ Ax

To stably difference Fyx 1in both supersonic and subsonic regions, Murman's
conservative switched scheme is used (ref. 2), that is

1
Fx > DeF = 2 [ei(Fi+1/2 T Fiag) t e D, - Fi—a/z)] (6)

where
. 1 Vi >0
i 0 V1<0
and
. 1 - M?£2 2 2
E v 2/3 -M(Y+l)¢x-M(Y—l)e¢w~
b |
3 Solutions that fully implement all the unsteady terms in Eq. (3) have

been obtained in two dimensions. The numerical procedure for the two-
dimensional case is the following alternating direction (ADI) scheme:

;
4 . B

f . B _ . - = . .0
- X sweep: Avbx 61(¢1_1 ¢i_1)j D,F + 6j5j¢i,j
)
A < .n B n+l1 ~ = n+l
z sweep: 7 Sudnby,y *maw S1(0 T 000y 7 83840
vhere 3§ = E;I/z - E;1/2 and F in the x-sweep is defined using ¢ in

place of ¢n+1.

The boundary conditions employed (fig. 1) are undisturbed flow upstream
(¢ = 0), an undisturbed flow or flat wall condition (¢ = 0 or ¢, = 0) on the
lateral boundaries, and zero pressure disturbance on the downstream boundary
‘ [Cp = -2£62/%(¢x + ¢y) = 0]. The airfoil tangency condition, ¢, = dZg/dx
{ (Zg(x) describes the airfoil profile), is applied on the airfoil mean surface,
| z = 0, An additional boundary is the contact discontinuity caused by the

2]
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downstream convection of veorticity from the tralling edge. Across this bound-
ary there is a discontinuity in potential, ' = [¢], described by

Ty +T,=0, (8)

which is obtained from pressure continuity. 1In addition there is a discontin-
uity in ¢,, across the wake. This is seen by applying Eq. (3) (in its non-
conservative, two-dimensional form) across the wake to obtain

Awa + Bfow = erx + [¢zz] .

Substituting Eq. (8) into this expression yields

[6,,1 = (A-B-wr_ 9)

A Taylor expansion gives the differencing which must account for these discon-
tinuities:

8.0, + T
L9373 1
¢yy Ay? -8 [¢yy] ' (10)

To obtain this expression, the wake is assumed to be midway between two mesh
points.

Three~dimensional nonlifting solutions to Eq. (3) in its low-frequency
form (i.e., all unsteady terms except bxy are ignored) have also been
obtained. The numerical procedure is a straightforward extension of the two-
dimensional case, that is,

5. 5% n S8 n
x sweep: o 8, (8, - ¢1‘1)j,k =D,F +¢C Ayt ¢i,j,k + 22 ¢1,j,k
+ =2 (¢ -0
4Axdy “Titikh1 o Ti-1,khl
n
T bk Y Yo ker)y ¢ an
56
. B e = - k 'k _ 4R
FA Sweep- Alpr 6i(¢i_1 ¢1_1)j ,k Azz (3 ¢ )1,_1 ’k
B n+1 3 C z ntl _ 40
y sweep: o 6, (07" - ¢)j,k - X;Z éjGj(¢ -¢ )1.j.k J

3. FULL POTENTIAL METHOD. The governing equations (1) and (2) can also
be solved without making use of a small disturbance assumption. Because no
terms are dropped, Eqs. (1) and (2) are frequently referred to as the unsteady
full potential equations. The full potential equations surpass the small
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disturbance equations in that they can account for full geometry effects and
treat a more complete range of flow-field variations.

In this section a numerical procedure for the unsteady full potential
equations is developed. At the current state of this development, the inertial
reference frame rather than blade fixed frame is retained in Eqs. (1) and (2)
and the equations are treated in only two dimensions. Although the full poten-
tial equations are solved, a thin airfoil boundary condition is presently
employed for simplicity. We remark that a similar numerical algorithm was
independently derived by Goorjian (ref. 3).

a) Governing Equations. Transformations can be introduced into Egs. (1)
and (2) both to simplify the treatment of boundary conditions and to cluster
grid points to flow-field action regions. Since thin airfoil boundary condi-
tions will be used, the transformation need only serve to cluster grid points.
With transformation, £ = £(x), n = n(z), Eqs. (1) and (2) take the form

pE 2 on,?
2,3 (P 20), 3 (T2 29) .
3 J T3¢ ( 3 aa) 3y ( 3 an) 0 (122)

2
p=[1- - @+

1/y-1

2 2, 2

2+ nte - 1) (12b)
where p = p/p,, u = u/U,, etc., and J = g, = 1/(x€zn) and where a uniform
nonzero flow is specified at infinity, causing an appropriate change to the
Bernoulli equation.

For all practical purposes, far-field boundary conditions and circulatjion
jump conditions across the cut are identical to those previously described.

b) Conservative Form. Equation (1) is equivalent to a second-degree
wave equation since p = p(¢) and thus

B0 020 _av(d .. 3, )30
5¢ - 30 ot~ P (a: tomt e az) 3t (13)

where 03p/39 1is a noncommuting differential operation as determined from the
Bernoulli equation. The spatial terms can be expanded in a similar way, e.g.,

A (pdy) = pdyy + dyppdy

and with rearrangement, Eq. (1) is written as
= 2 - 2 - . 2 - 2
°ct + 2¢x¢xt + 2¢z¢zt (a ¢x )¢xx 2¢x¢z¢xz + (a ¢y )¢zz (14)

2 - pY'I/M,,2 (in the chosen dimensionless variables).

where a
Equation (14) is useful in displaying the type of Eqs. (1) and (2) but in

its nonconservative form it is inappropriate for '"shock-capturing" (it does

not give the weak solutions that model the Rankine-Hugoniot solutions). To
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maintain the conservation-law form of Eq.

(1) and yet still expose ¢ as the
true dependent variable, the following Taylor series is introduced into the

3p/3t term
- (2
Py +(3¢) (¢ - ¢o) (15)
o

A
: where o represents a nearby known state or solution. Use of Eq. (15) allows

Eq. (12a) to be rewritten as

5 2 2 &= - "2 -2 -
at[+B°(BT + Ex ¢€3€ + n, ¢n3n)(b ¢o)] Bg(péx ¢€)*'3n(0ﬂz ¢n)4-3Too (16)

where B8 = p2~' and

implies division by J, i.e., p = p/J.

¢) Numerical Algorithm.

An implicit approximately factored numerical

disturbance equation.

TIETRT T T IR TRt F

(refs. 4-7).

PR TRTR T W o

Here Af = An =1

The switching parameter

i
[

- . g= -
Gn(pnz 6n¢) (

- . _
Gg(pix 6€¢) (

+ v

and only the varying indices are indicated.
0 =1or 2 for first- or second-order spatial accuracy in supersonic regions.

\Y

n

th

algorithm can be con»tructed for Eq. (16) in a similar way as for the small
The spatial difference operators are treated in much
the same manner as they are in the steady-state relaxation algorithms
Define the operators as

2
+
Pigy 0y

X
(L -v, )
J >i+1/2[ i+1 2

(1+8)p, + (1 - 0)p,_
i+ 2

1
](¢1+1 - ¢i)
Py ¥ Pi

£ 2

x

- (1 -v,)) ————
( J )1-1/2 [ v1 2

(1 + 08)p + (1 - 6)p
i-1 i-2
vy 7 ](¢i - ®i_1) (17a)
2 (O + 0.
_é_) “itli__'l (0g4, ~ 93
j+1/2 ]
2
Ng ) Oj + pj"l
- —— (¢, = ¢, ) (17b)
( J j-1/2 2 i ji-1

The parameter
is defined in a way similar to reference 5 as

[1 - (p/e*)?]c 1 <c <10
0 |if

1 if

v < 0, i.e., subsonic (18)

v -1, i.e., supersonic
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The parameter v can be set to 1 throughout, but accuracy will be impaired
unless 6 is also set to 2. The operators (17a) and (17b) assume that the
flow will be supersonic only in the positive x-direction. The density is
found from the Bernoulli equation with (Af = An = 1):

o, | = 1L S C RN
£|1 2 71
Py41 T O4-
® =j jl-ﬁ@
n| 2 n'j
J
. ntl . (e" . ™) 5 o™ .
o,' I =60
The metrics £y and n; are obtained from
2
g-
x ¥+ *11
N om——2 .
¢y zj+1 - zj_1

while the term (5x2/3)1+;/2 in Eq. (17a) is formed either as

2 2 2
(Ex ) - (Ex /J)i+1 + (£x /J)i
i+1/2°

I 2 (19a)

or

(19b)

J

(fzi) I T
i+1/2 2(xy,, - %)

The terms (£x?/J)i-1/2, (nz2/J)j+1/2,.and (nz?/J3)j-1/2 receive similar treat-
ment. If Eq. (19a) is used, it is essential to add -8¢(pwfy /J)Sftw to the

right-hand side of Eq. (16) to subtract out a numerical truncation error due
to incomplete metric cancellation.

Using these operators, Eq. (16) is put in the approximately factored form
(see ref. 8 for more details).
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This equation has the form
n+l n
LnL€(° - %) =R (21)

and it is implemented as an algorithm as

*=
LnA¢ R

LEA¢n = Ap* (22)

on+1 - 0n + Aon

The algorithm Eq. (22) requires only a series of scalar tridiagonal
inversions and it is therefore very efficiently implemented. Computer storage
equivalent to four levels of ¢ have to be supplied with p computed from
the Bernoulli equation as needed. '

4. RESULTS. A first assessment of the full potential method is to com-
pare with previous steady solutions. This is done in Fig. 2 for the case of a
circular arc profile at a small angle of attack. The particular small distur~
bance solution shown in this case is nonconservative and this is the cause of
the discrepancy in shock location. Basically, the two numerical solutions
compare well. The differences from the experimental pressures are undoubtedly
due to viscous effects. For this particular computation, the switched density
expression was used (Eq. (17a)). As previously mentioned, an upwind unswitched
expression can be used (i.e., v = 1 in Eq. (17a)) if a higher order difference
is used. This is shown in figure 3 which compares the unswitched full poten-
tial result with the same case as in figure 2. It is seen that the upwind
scheme duplicates the switched density result. The overshoot in the switched
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A
F' result 1s not inherent in switching, but probably indicates that modification
‘ of the v expression is required.

A good unsteady solution to check out the full potential method is the
slowly thickening and thinning airfoil. In this case we have a circular arc
profile whose thickness 1T varies as

M4t = 0.1(10 - 15T + 68)E®, O<t<15, E=t/15

MY %t = 0.1(1 - (10 - 15% + 68)€%] , 15<t <30, €= (t/15) -1
The comparison in figure 4 of midchord pressure with the result of reference 9
is quite good. For this result, however, the present full potential method
utilizes more unsteady terms than are absolutely required.

A case that more fully exercises the unsteady terms is the calculation of
an impulsively plunged flat plate. This is a good test case because there are
: analytical results with which to compare. Figures 5(a)-5(c) compare both the

present small disturbance and full potential results with the linear analyti-

cal results of reference 10. It is seen here that both the full potential and
1 small disturbance cases compare well with the linear result. This is an impor-
3 tant result as it shows that both methods are predicting both upstream and
downstream propagating waves reasonably well. In contrast, the previous case
(the thickening-thinning airfoil) demonstrates only the ability to handle -
upstream propagating waves. j

The final computation is one that demonstrates the ability of potential
methods to predict real transonic rotor flows — a computation of the flow on
an advancing, nonlifting rotor using the three-dimensional small disturbance
algorithm (Eq. (11)). The experiment in which these data were generated and
some corresponding two-dimensional computations are described in reference 9.

t The model in question was a nearly rectangular nonlifting helicopter rotor.
- The unsteadiness of this flow is mainly due to the variation in the chordwise
Mach number component which the blade sees. The reduced frequency of this
variation is of the order of the inverse aspect ratio and is quite low.
Therefore, it is appropriate to retain only the ¢4, term in Eq. (3), which
amounts to assuming an infinite downstream propagatgon rate. Figures 6 and 7
show the numerical and experimentally obtained blade pressure distributions at
azimuths of 60° and 120°, respectively. It is seen here that the small dis- |
turbance method predicts the pressure variation and shock motion quite well. i
It is of interest that the 120° case has much stronger shocks than the 60°
case. This is indicative of the basic flow unsteadiness, as the two cases
would be identical in a steady computation at the inboard stations where
crossflow effects are small. In fact, this same sort of asymmetry was mani-
fest in the thickening-thinning airfoil solution in figure 6.

5. CONCLUDING REMARKS. Potential methods seem to hold considerable
promise for predicting the transonic flow on an advancing rotor blade. Two
such methods — a small disturbance and a full potential method — are described -
here. Of the two methods, the small disturbance is the best developed, mainly \
because of history, smaller storage requirements, and simple geometry. Small
disturbance results show excellent agreement with three-dimensional, nonlifting
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rotor data. However, the limitations of this approximation, especially at
lower Mach numbers and high 1lift, are well known. Therefore, we are develop-
ing an implicit full potential method that is fully conservative. At present
the method i1s developed to the point of accurately predicting two-dimensional
highly unsteady flows using linearized boundaries. It is clear that the
method works well and will ultimately be developed into a full three-
dimensional rotor flow code.
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Sharp Discontinuity Tracking Applied

To Explosion Problems¥
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Y
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0. Abstract

Explosion dynamics problems involve the propagation and interaction of
F shocks and contact discontinuities, usually in several space dimensions.

4 Since standard finite difference methods which smear these discontinuities
do not give sufficiently accurate results, a sharp discontinuity tracking
method which explicitly follows the surfaces of discontinuity has been
developed. This method is applied to explosion problems in one and two
space dimensions.

#This material has appeared as NSWC/WOL TR 78-186
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1. INTRODUCTION

Many problems of interest involve the propagation of blast waves arising from
explosions, and the interaction of these waves with boundaries. In principle, a
computational solution of this fluid dynamics problem should provide a cost-
effective alternative to expensive physical experimentation. In reality, the
computational problem is an extremely difficult one which involves the propagation
and interaction of various discontinuities, both shock waves and contact disconti-
nuities (often, interfaces between different materials), in more than one space
dimension. It is of practical interest to get accurate results for the shock
pressure profile (especially the peak pressure) and also to correctly predict the
motion of material interfaces which significantly affect the flow field.

Most finite difference methods currently in use (both Lagrangian and
Eulerian) for these explosion problems use either explicit or implicit artificial
viscosity to spread or smear shocks over several computational mesh points. This
falsifies the peak shock pressure and impulse. To obtain sufficient accuracy, it
is necessary to use a very large number of mesh points, which becomes prohibitive
for complicated multidimensional problems. While pure Lagrangian methods can
follow material interfaces well and can allow areas of fine resolution to move
with the fluid, they ultimately tend to break down because severe material
deformation leads to distorted computational meshes. Pure Eulerian methods can

" handle distortion and internal slip but produce diffusion of material interfaces

and do not readily allow localized resolution.

This research is aimed at developing a numerical method called "sharp
discontinuity tracking" which will follow shocks and contact discontinuities
accurately without introducing smearing or computational oscillations. While the
method is specifically designed to handle the problem of determining the pressure
history under water due to a chemical explosion in air above a water surface
(herein called the "EAAW problem'), it should be applicable to other explosion
dynamics problems of interest. This method allows for adequate computational
resolution of physically small or shrinking regions which contain important
physical phenomena, such as the air region between the expanding explosive gases
and the water surface in the EAAW problem just described.

The present method is based partly on the work of Solomon et al. [References
1, 2] who developed a computational method for predicting the three-dimensional
steady supersonic flow field over reentry vehicles at angles of attack. Since such
a steady flow problem is hyperbolic with the axial direction being a time-like

coordinate, it is similar to the two-dimensional axisymmetric unsteady flow case
considered here.
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2. COMPUTATIONAL METHOD

A. OVERVIEW OF METHOD. The method of sharp discontinuity tracking is a
finite difference method for obtaining approximate solutions of the nonlinear
system of hyperbolic conservation laws (partial differential equations) which
describe inviscid fluid dynamics. The proposed methodology is distinct from the
usual finite difference methods since it defines explicit surfaces in the
computational field which represent physical discontinuities, both shock waves
and contact discontinuities. A special system of finite difference equations
governs the motion of these surfaces and exactly enforces the physical boundary
conditions which must hold across the discontinuities. No finite differences
are taken across these surfaces., Since the discontinuities are perfectly sharp,
interactions can be treated by locally exact methods. In practice it proves
useful to perform a time-dependent coordinate transformation to obtain a regular
mesh in which the contact surfaces are always coordinate lines and the shocks
"float" through the Fulerian mesh. The regions of relatively smooth flow between
the discontinuities can be accurately handled by standard second order accurate
finite difference methods.

The surfaces of discontinuity represent physical shock waves and contact
discontinuities. The motion of these surfaces is determined by the physical
conditions which must hold across the surfaces and is also influenced by the
surrounding fluids. The correct conditions linking the values of flow variables
on either side of the surfaces are the Rankine-Hugoniot jump conditions for a
shock, and the equality of pressure and normal particle velocity for a contact
discontinuity. The surrounding fluid can influence the surface only in certain
ways determined by the theory of characteristics for a system of hyperbolic
partial differential equations. By selecting appropriate admissible character-
istic compatibility relations and combining them with the correct physical
boundary conditions, one obtains a system of differentisl equations which governs
the motion of the surface and gives the flow variables on either side as a
function of time. These differential equations are then discretized to give a
system of finite difference equations for advancing the discontinuity in time.

The surfaces of discontinuity move relative to each other and will in
general collide and interact. Where they meet they are locally plane and the
values of flow variables on either side are explicitly known. The interaction
then reduces to an algebraic problem of finding a configuration of transmitted
and reflected discontinuities which satisfy all of the necessary conditions in
the infinitesimal neighborhood surrounding the point of intersection. This
locally exact solution is explicitly inserted into the computed flow field.
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B. GOVERNING EQUATIONS FOR AXISYMMETRIC FLOW

The equations of inviscid unsteady flow are written in spherical coordinates

'f‘ r,0,6 (Figure 1) for an axisymmetric problem (3/3¢ - 0, r 2 0, 0 < 6 £ 1) as the
i following system of weak conservation laws:
4
3U , aF . 3G _
-F ot Toar TagtH=0 (09
i where
pu

] 2 p 2 2
. U = r"siné pu F = r'sing pu“+p
? pv puv

pE u(pE+p)
E (2)
f PV 0 2
‘ G = rsinb puv H = ~(2p+pve)rsing

1 ov2+p -répcose-puvsine)
v (pE+p)
Here ¢ is the density, u is the r-component of velocity, v is the ®-component of

velocity, e is the specific internal energy, and E = e + (u2+v2)/2 is the total
specific energy. The pressure p is given by an equation of state for each fluid
(see References 5,8 for equations of state for pentolite, air, and water) in the
form

p = plp,e) (3)

. e ——— -

A "main" shock wave is defined by the surface r = s(6,t) and contact dis-
continuities are given as r = cy(8,t), i = 1,2,---I. For the explosion in air
above water, I = 2 and cj is the contact surface separating the explosive gas
products from air, while c, is the air-water surface (plus an appropriate closure
for large 6, see Figure 1). The main shock is, in general, partially in air and
partially in water. These major discontinuities s and cj are unknowns whose
position and velocity is known at time = O and which must be advanced in time by
the solution procedure. "Secondary" shocks and contact discontinuities deemed to
be of less physical importance are allowed to be smeared out by the conservative
finite difference scheme used for interior mesh points, as discussed below.
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It is noted that the choice of the form of equations system (1) eliminates
the need to specify boundary conditions on r = 0 and on the symmetry boundaries
6 = 0,7 since the unknown U is identically zero there. This 18 consistent with
the fact that by symmetry, u = v=0atr =0and v=0on6 = 0,r. However,
as formulated here, the values of the primitive flow variables must be found on
6 = 0,7 in order to implement the shock and contact surface treatments. This is
accomplished by solving a special set of equations which hold only on 6 - 0 and
8 = x; these equations are obtained by dividing (1) by sin® and using L'Hopital's
rule to evaluate the limits 6 » O,n.

C. COMPUTATIONAL PROCEDURE

The computational field is viewed as being composed of regions of relatively
smooth flow which are separated from each other by explicit discontinuities--either
shocks or contact discontinuities. It is convenient to employ a time dependent
transformation which always maps the contact discontinuities ¢y, which are single-
valued, piecewise smooth curves in physical space, into coordinate lines in
computational space (Figure 1). It will be seen that, for the explosion in air
above water (EAAW), this has the advantage of preserving computational resolution

in the air region cj X r £ c3, even if ¢y - ¢ becomes small.

The transformation from physical to computational space is given generally as

X(r,8,t)
Y(8) (4

X
Y
T t

and the governing partial differential equations (1) are expressed in the trans-
formed computational space (X,Y,T) as

au , af A%

T ).4 oY 0 (5)
where
'}“-xtu+xrr+xec 4
§=v¢ :
8 (6)
aX X X Y
t r (:] 8
Hel-gg -5 F (ax*av)c j
Once a specific choice of transformation (4) 1s made, the quantities X.,X.,Xg,Yp, i

and their partial derivatives are given explicitly in terms of s(6,t), ci(o,t),
and their partial derivatives.
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For the EAAW problem, convenient choices of the transformation X are:

gas region: X = -—5~--

0% e (0 €00

r-cl(e,t)
air region: X=1+ (k,-1 (€3]
Cl(e,t§ <r : Cz(e,t) 1 ) Cz(e,t)—cl(e)t)

= kl+k2[r—c2(6,t)]

>
)

water region:
cz(e,t) <r

so that r = ¢3(6,t) is mapped into X = 1, and r = cy(8,t) is mapped into X = k.
Then for a given number of mesh points in the X~direction in the explosive gas
region, the choices of k; and ky give the relative computational resolution in
the air and water regions respectively. A convenient choice of the transformation

Y is (in inverted form)
wY -1
0 =7 -1

where w is a parameter which gives graded resolution in physical space with
finest resolution near 6 = 0 if w > 1,

P

A mesh function U& j is defined on the uniform computational mesh

for X = mAX m=0,1,2,- ';M(j)
j=1,2’3 Y = nAY n = 0’1)2!.."N
T = T _+KAT k = 0,1,2,---

where m(1)4X = 1, m(2)4X = k3 ~ 1, NAY = 1, and j=1,2,3 for the regions of
explosive gas, air, and water respectively (Figure 1l). The main shock defined by
r = s(0,t) in physical space "floats" through the uniform mesh and is represented
by special mesh points which are located on Y = constant lines.

It is assumed that initial data (see, e.g., Reference 8) is given T = T, for
Psu,v,e,p,c4(08,ty) and s(8,t,) on the spatial mesh defined above. In order to
advance the solution to T, + AT, procedures must be given for

(1) "interior" points (1 Sm S M@G) -1, 1 SnsN-1)
(ii) points on the symmetry boundaries 6 = 0,7 (n = O,N)
(i11) shock points

(iv) contact discontinuity points (j =1, m = M(1); § = 2, m = 1 and ‘
m=M2); =3, n=1) g

(v) interactions between a shock and a contact discontinuity

by




The solution at all points is advanced in time using finite difference predictor-
corrector methods. For the interior points (i), the equations (5) are discretized
and standard MacCormack [Reference 9] schemes (in this case, predictor forward
differencing and corrector backward differencing in both X and Y) are used to
advance the conservation vector U. The primary flow variables are easily
recovered from the definition of U and the equations of state. Points on the
symmetry planes (ii) are advanced in the same way, only the governing equations
must be modified (as described above) before discretization. The procedures for
advancing the remaining points, namely those at the shock, the contact discon-
tinuities, and the points of discontinuity interaction, are described later.

The MacCormack finite difference scheme was chosen for its second order
accuracy and its good "shock-capturing" properties (ability to reasonably smear
out a shock over several mesh points), but any other predictor-corrector method
could be used. For very strong captured shocks, such as the secondary shock
which implodes on the origin in : spherical explosion, it is necessary to imple-
ment a computational "filter" (similar to that in Reference 10) to limit captured
shock steepening. Any other shock capturing "improvement" may also be included.

Computational stability demands that AT be suitably restricted. A necessary
(but not sufficient [Reference 11]) criterion can be derived using a geometric
argument which requires that the domain of dependence of the "linearized" differen-
tial equations be contained in the domain of dependence of the finite difference
equations. When this criterion is used with a multiplicative safety factor of .9,
no instability is observed in actual computation.

D.  ADVANCING THE MAIN SHOCK AND CONTACT DISCONTINUITIES

A crucial requirement of the present computational method is to provide an
appropriate numerical treatment of the explicit surfaces which represent shocks or
contact discontinuities. The known physical boundary conditions, namely the
Rankine-Hugoniot jump conditions and the equality of tangential velocity across a
shock, and the equality of pressure and normal velocity across a contact dis-
continuity, must hold exactly. However, these boundary conditions alone are not
sufficient to provide equations for advancing the surface in time, but must be
considered along with appropriate information obtained from the governing PDE
system (1). From the theory of characteristics for hyperbolic systems of PDE's,
one can derive characteristic compatability conditions (see Reference 12) which
are associated with certain bicharacteristic directions. Admissible characteristic
relations, that is, those ass~ciated with directions pointing away from the
surface in the negative time direction, effectively determine the influence of the
surrounding fluid upon the discontinuity. 1In the manner introduced by Kentzer
Reference 13) and used by Solomon et al. (References 1, 2), it is possible to
combine the physical boundary conditions with the correct characteristic compati-
bility relations to obtain a system of PDE's which hold only on the surface. A
finite difference approximation of these equations then provides the algorithm for
advancing the surface, and the flow properties on either side, in time.
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(1) CONTACT DISCONTINUITY. A contact discontinuity (c.d.) r = c(8,t) is a

material surface for the fluids on either side of the discontinuity. Hence
[
]

c, Ut ~vs= 0 (8)
holds at a c.d. (subscripts t,0 indicate partial derivatives). There are three
admissable characteristic compatability relations which hold on each side (left
and right) of the surface. Two relations correspond to a streamline and one to
the Mach conoid. These compatability relations are of the form

3p _ 4 30 _
st~ Mar TR 9
C
3 3 [Ce
aT (chtang) T uaT (c ) R2 (10)
ac c
3 _t a_(8)|-
Ay 3Tt Ay [ar VAT (c R, (11)

It is emphasized that (9)-(11) hold on each side of the surface, and hence
represent six equations. Rj and Ry contain derivatives interior to the surface
(Y-derivatives) and undifferentiated quantities evaluated at the surface, while
Ry contains additionally X-derivatives. Aj, Ay, and A3 contain only undifferenti-

ated quantities, and D2 =1 4+ (—QJ . The actual A, and R, are given in Appendix A.
c c i
The pressure p and the normal vélocity
c

qnorm = 35 are constant across the c.d., while the density p, energy e, and
c

i

tangential velocity qtang can sustain jumps.

In addition to the characteristic compatability relations we have the equation
3T \ ¢ c Y c 3y

which expresses, through the chain rule, the equality of cross partials

ace ac
'a—t— = 38 ° Also
.. 3 3e
aT -~ A1t ' %2 a1 (13)

- (2P - (32
holds on each side, where 1 (ap e and Ko (;e 0 are given by the appropriate

equations of state. A procedure is now clear for advancing the c.d., since
equations (9)-(13) provide nine equations in the nine unknowns which are (the
time derivatives of) ct’ce'p’[p’e’qtang]Left’[°’e’qtanglkight‘

4é




I, - e {
e Ak e e -

(41) SHOCK. A shock r = s(8,t) is a surface across which the Rankine~Hugoniot
jump conditions hold, namely

anorm = constant (14)
2
p+PQ . = constant (15)
e+ p/o + Qnorm/Z = constant (16)
where U orm is the velocity normal to the shock in (r,8) coordinates,
se 2 st
Ds =1 + (;—) and Qnorm = qnorm - 5;-1s the relative velocity normal to the

moving shock surface. Additionally, the tangential velocity is unchanged across
a shock,

qtang = constant (17)
Only shocks moving into undisturbed fluid are considered here. For this case,
there is only one admissible characteristic compatability relation, and it
corresponds to a Mach conoid on the disturbed (high pressure) side of the shock.
The compatability condition is of the form

d
_2.+ A %Ynorm

43 R

4 (18)

where R4 contains derivatives in the X-direction, derivatives interior to the
shock, and undifferentiated quantities. (See Appendix A). Differentiating (14)-(16)

)
with respect to T and solving for %%-and S;EEEE, it is possible to rewrite (18) as

98 s
t 3 (%e\! _
4 [F " A6 oT (s_)] " R (19

where Ag and Ag contain only undifferentiated quantities. The equality of cross
partials, expressed through the chain rule, is of the form

3 [Se 4
(),

so that (19) and (20) provide equations for advancing sg and s¢. It is then easy

to get the advanced value of Yorm and use the Hugoniot conditions (14)-(16) to

solve for all properties behind the shock.
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(111) COMMENTS. For either a shock or a c.d., we have a system of PDE's for
advancing (in time) the surface and the flow variables on either side. These
equations are implemented with a predictor-corrector finite difference method.
Spatial differencing internal to the surface is handled in the usual predictor-
forward, corrector-backward way. However, differencing in the X-direction requires
special treatment since no differences can be taken across the discontinuity.

Thus at the left side of discontinuities the differencing is always backward (both
predictor and corrector), whereas on the right side the differencing is always
forward. This procedure is only first order accurate, but it is possible
(Reference 14) to add a correction term to achieve overall second order accuracy.

At the shock, finite differences are taken on a non-uniform mesh, but again
it is possible to secure second order accuracy by adding a correction term.
Additionally, since the shock is moving into a previously undisturbed fluid where
there are no mesh points, it 1is necessary to insert new mesh points behind the
advancing shock. This is done by quadratic interpolation of the conservation
vector U using the known primary flow variables at the shock and the values of U
at the mesh points along Y = constant lines behind the shock.

E. INTERACTIONS

Since the sharp discontinuity tracking method treats physically important
discontinuities as explicit surfaces, it is necessary to analyze the situation
which occurs when two such discontinuities interact. Considered here is the case
of an air shock hitting the air-water surface obliquely. It appears that the
qualitative nature of the resulting physical phenomena depends upon the incident
shock strength and the angle at which the discontinuities meet [Reference 7]. For
sufficiently strong shocks and sufficiently small incidence angles a, a '"regular
refraction" solution exists as shown in Figure 2. 1In a coordinate system moving
along the surface with point A, the flow is pseudo-steady. Assuming locally
constant states near A and locally plane discontinuities, the problem is reduced
to an algebraic one of finding the twelve unknowns (p,u,v,e,p in regions 3 and
4, B,Y) which satisfy twelve nonlinear equations (Rankine-Hugoniot jump conditioms
and constancy of tangential velocity across each of R and W, state equations in
reglons 3 and 4, contact discontinuity conditions across the disturbed water
surface).

This locally exact solution gives the necessary information to track the
transmitted water shock W and the disturbed air-water interface. At present the
reflected shock is allowed to be smeared out by the MacCormack finite differencing,
but there is no conceptual difficulty in explicitly tracking R as well.
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3. RESULTS
A. ONE DIMENSIONAL. The shock tracking method has been used successfully
{1,3]) in treating aerodynamic problems, but apparently has never been applied to
multidimensional explosion problems. Our first efforts, however, were to
develop the tracking method for spherical explosion problems in one space
dimension and time. In this case, the formulation of Section 2B holds with the

simplification v = 0, 6 = %u This type of test problem is ideally suited for the

standard Lagrangian finite difference approach (as contrasted with our methods
which are essentially Eulerian) since mesh distortion is no problem in one dimen-
sion. Furthermore, there are special features of the one dimensional problem
which could be exploited to obtain increased computational accuracy. However,
since our goal is to develop methods for multiple space dimensions, we did not
employ any techniques in the one dimensional testing which wouldn't be readily
extendable to more space dimensions. The following cases have been computed:

(1) Spherical Explosion of Pentolite in Water. The sequence of physical
events 1s described in detail in [Reference 4)}. Briefly, it is assumed that a
pentolite sphere is centrally detonated and that the flow field is known at the
instant that the detonation wave reaches the surface of the sphere (''Taylor wave"
solution). At this instant a blast wave begins moving out radially into the
water, followed by the contact discontinuity separating the expanding explosive
gas bubble from the water. A rarefaction moves back into the explosive gases,
followed by the "second shock” which implodes on the sphere's center. Computa-
tional results for peak shock pressure vs. radial distance obfained by the
present method are compared (Figure 3) with those obtained by Sternberg and
Hurwitz [Reference 5]. These latter results are known to agree well with
experiment. It is noted that Sternberg used a sharp shock algorithm, but his
method is not readily extendable to multiple dimensions. He also took advantage
of the fact that, in one space dimension, the initial rarefaction which moves
back into the explosive gases can be explicitly inserted into the computation.
As this cannot be done in more than one dimension, this possibility was not
exploited by the present method. Nevertheless, agreement between the two
computational results is excellent (points of comparison other than those shown
are equally close).
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(i1) Spherical Explosion of Pentolite in vy = 1.4 Air. This problem is
more difficult than the explosion in water case because the initial rarefaction
moving back into the explosive gases is considerably stronger. Shown in Figure 4
is a comparison of the computational results for peak shock pressure vs. radius
obtained with the present method (40 mesh points in explosive gas, 15 in air when
main air shock at 20 charge radii), those obtained by Sternberg and Hurwitz
[Reference 5], and a curve fit to experimental data derived by Goodman [Reference 6].
Agreement is generally good, despite the fact that the present method does not
explicitly insert the known one dimensional rarefaction solution (as does Sternberg).
The pressure profiles as a function of radius at selected times is shown in
Figure 5, where the qualitative nature of the interface movement and secondary
shock propagation is seen to be correct.

B. TWO DIMENSIONAL AXISYMMETRIC. In two space dimensions, the development of
the method is incomplete, so that the entire EAAW problem cannot yet be handled.
However, some preliminary results for a spherical explosion in air above a water
surface have been obtained. These results are shown in Figures 6 and 7 for a
centrally detonated explosion of a pentolite sphere located 30 charge radii above
the water surface. The computation used an extremely coarse finite difference
mesh composed of about 500 mesh points {approximately 25 points radially on each
of 20 6 = constant lines). The 2-D axisymmetric computation was ¢
initialized with the 1-D computational results at the instant before the spherical
shock hits the water surface. TFigure 6 shows the main shock position at this
instant and at some later times. TFigure 7 shows the pressure vs. radius at these
same times along the line & = 0 (straight down below the charge).

No comparison with experiment is yet possible because the computation has not
been carried out sufficiently far in time. Further results cannot be obtained
until an analysis is made of the various types of interactions which can occur
when an oblique shock hits the water surface. This interaction must be understood
in detail because the present computational method requires an explicit local
handling of discontinuity interactions. This problem is more difficult than
originally anticipated because the family of possible interactions appears to be
very complicated, including regular refraction, Mach refraction, and refraction
with bound and free precursors [Reference 7]. (So far, only regular refraction has
been incorporated in the present method.) Thus this seemingly incidental aspect
of the overall EAAW configuration is in fact a difficult fundamental physical
problem in and of itself. Nevertheless, the preliminary computational results
indicate that, once these local interactions are understood, the present computa-
tional method will prove successful for the overall explosion dynamics problem.
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Appendix A: Ay and Ry appearing in contact discontinuity and shock equations




A where the terms B3 and Bg are defined as

2 Se
B3 = u[— KZQnom(.l:(ZpB P+ QnompB)

2 (%
- 2a ppB(f); + Qnorm)]

|<2 ZSt
59 = “[ orm(l + p_>pB(Qnorm + Ds )
s
_t
D
s

+ azpB]

a=1/p@ - 0

- K2Qnorm

and the subscript B refers to the undisturbed state ahead of the advancing

! shock, whereas unsubscripted variables refer to the disturbed (high pressure)
E side.
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COMPARISON OF 3-D HYDROCODE COMPUTATIONS FOR
SHOCK DIFFRACTION LOADING ON AN S-280 ELECTRICAL EQUIPMENT SHELTER

Richard E. Lottero
Ballistic Research Laboratory
U.S. Army Armament Research and Development Command
Aberdeen Proving Ground, Maryland 21005

ABSTRACT

The normal shock diffraction loading on an S-280 Electrical
Equipment Shelter (essentially a rectangular parallelepiped) by a
34.5 kPa (5.0 psi) shock is reported. Two different three-dimensional
hydrodynamic computer codes, BAAL from the Los Alamos Scientific
Laboratory and HULL from the Air Force Weapons Laboratory, are used.
The results from the two hydrocodes are compared with one another,
showing good agreement, and with two existing semiempirical models.
Improvements to these models are suggested, as the computed results
indicate that the loading for this three-dimensional shelter is signi-
ficantly lower than the models predict. The effects of artifical
viscosity in the hydrocodes and of the smearing of the computational
shock in the finite difference grid are also discussed.

I. INTRODUCTION

Shock diffraction and drag phase loading on equipment and
structures have been of significant interest to the Army ever since
the introduction of nuclear weapons. Because of the inherent three-
dimensional nature of such loading, the more commonly accepted method
for obtaining this loading has been through field testing, dating back
from atmospheric nuclear testing to the current large scale high
explosive (HE) testing. Because of the high cost and necessarily
complex planning involved in these tests, they are held relatively
infrequently. Unpredictable anomalies such as jetting frequently
occur, often with the intended targets receiving loading considerably
different from that which had been expected. Space for targets and
data acquisition equipment is invariably at a premium during tpese
tests, leaving potentially valuable tests untried, and worthwhile data
ungathered.

As pointed out by Taylor! in 1972, the accepted methods for. _
computing shock diffraction loading on simple structures as outlined in

1Taylor, W. J., - "A Method for Fredicting Blast Loads‘During the
Diffraction Phase,” The Shock and Vibration Bulletin, NR. 42. Part
4 of 5, Shock and Vibration Center, Naval Research Laboratory,

Washington, DC., p. 135 (Jan 72).
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the U.S. Army Technical Manual TM-5-856-12, hereafter referred to as
the Technical Manual, are no longer of sufficient accuracy for use in
blast hardening and vulnerability assessment studies. Essentially, the
method ‘outlined in the Technical Manual treats a given three-dimensional
sFructure, such as a rectangular parallelepiped, as being locally two-
dimensional. Loading is then computed based on the speed at which a
rarefaction wave travels across a characteristic dimension of the given
target face. During the last several years, numerical methods in the
form of hydrodynamic computer codes for simulating three-dimensional
shock diffraction over obstacles have been advanced to the point where
they can be used to complement, and in some cases replace, the use of
experiments and models such as those in the Technical Manual.

A reference problem is defined, that being an S-280 Electrical
Equipment Shelter being struck by a 34.5 kPa (5.0 psi) overpressure
step shock. The present study includes a comparison of the HULL and
BAAL hydrocodes with one another and with the Technical Manual model
and Taylor's model. Improvements to the Technical Manual model are
suggested, giving good agreement with the hydrocode results. The BAAL
hydrocode has previously been shown to compare well with experimental
shock loading on a similar rectangular parallelepiped at the same shock
strength. Finally a discussion is presented on the net rotational
moments on the shelter as predicted by the several methods in order to
further emphasize the differences in their loading predictions.

II. REFERENCE PROBLEM

The above-mentioned shock diffraction loading problem involves an
S-280 Electrical Equipment Shelter. The shelter is taken to be 3.62 m
wide, 2.17 m deep, and 2.11 m high. It is sitting on the ground with
one of the larger of the two different sized faces, defined here as the
front face, oriented so that it is normal to the velocity vector of an
oncoming one-dimensional shock wave. The shock wave is a step shock
with an overpressure p* of 34.5 kPa (5.0 psi). Ambient conditions
ahead of the shock are a temperature T, of 288.2°K (518.7°R), a

. 3
pressure p, of 101.3 kPa (14.7 psi), and a density o, of 1.225 kg/m

(.0765 Ibm/fts). The air both ahead of and behind the shock is
assumed to be a polytropic gas, with a ratio of specific heats v of
1.4. ’

A simplified, locally one-dimensional, model that can be used to
represent the flow field at the time that the incident shock reflects
off the shelter front face is shown in Figure 1. The flow field shown

2mpesign of Structures to Resist the Effects of Atemic Weapons, " U.S.
Army Corps of Engineers, EM-1110-345-413 (1 July 1959). (Republished
as TM5-856-1 in 1965).
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is that for a shock tube with a closed end. Region 1 represents the
ambient air; region 2 represents the air behind the incident shock
wave; region 3 represents the shock tube reservoir; region 4 represents
the accelerated flow region between the expansion wave and the contact
surface. Finally, region 5 is the region behind the shock wave which
reflected off the rigid wall that represents the shelter front face.
The theoretical peak reflected overpressure of 78.5 kPa as computed by
using the one-dimensional model is an excellent reference point to use
in assessing the validity of the hydrocode solutions. The initial
reflection process at any given point on the front face is one-dimen-
sional until the expansion waves coming in from the top and side edges
of the front face arrive at that point.

III. SIMPLE MODELS

Prior to presenting the results of the hydrocode computations, it
is worthwhile to discuss the existing models for loading on three-
dimensional structures. A logical place to start is the Technical
Manual. The equations presented here are for a step shock.

The Technical Manual's method for computing the loading on the front
face is based on an assumed clearing time tc, where

3h
t. = g; . 1)

Here, c. is the sound speed on the front face of the shelter after the
shock has reflected off it; for this case g = 369.6 m/s. The value

to be used for h is the smaller of either the height of the shelter or
one-half the width; for this case h = 1.81 m. This gives a clearing
time for the S-280 shelter tc = 14.69 ms, where tC is "... the time

required to clear the front wall of reflection effects?." During this
time, the average overpressure on the front face decreases from the
peak reflected overpressure to a value

— 1 2
PE = (pz - pl) + 0.85 5 pzuz . (2)

For the case under consideration here, the peak reflected overpressure
on the front face is (pS - pl) or 78.5 kPa (11.4 psi), and pE is

37.9 kPa (5.49 psi). The solid line labeled "FRONT" in Figure 2 shows

the average overpressure-time history for the front face of an 5-280
shelter being struck by a 34.5 kPa (5.0 psi) step shock wave as computed

using this method.




Taylor! suggested an alternate method to estimate the loading on
the front face of an obstacle, based on the number of rarefaction wave
crossings. For a three-dimensional object such as the $-280 shelter
there will be a succession of rarefaction waves originating from the top
of the front face, reflecting in kind off the bottom boundary, plus a
succession of rarefaction waves originating from the side of the front
face, also reflecting in kind off the symmetry plane. In an actual
occurrence of loading through shock diffraction, there would be consid-
erable interaction between the crossing expansion waves. Because Taylor
intended that the method be a simple approximation, the waves are assumed
not to interact with one another. As a further simplification, the
rarefaction wave speeds are assumed to be equal to the sound speed in
the reflection region immediately after the incident shock reflects off
the front face. In the case of the S-280 shelter, the height is 2.1 m,
and the one-half width is 1.81 m. The sound speed Cg in the reflection

region is 369.6 m/s. Using Taylor's method, the required crossing time
for an expansion wave running from the top to the bottom of the front
face is 5.704 ms; for an expansion wave running between the side edge
and the symmetry plane the crossing time is 4.897 ms. For each
expansion wave crossing, the average overpressure on the front face is
then computed as a percentage of the initial reflected overpressure on
the front face. The values for average overpressure using the fitted
curve in Figure 14 of Reference 1 are summarized in Table I, and are
shown as the solid line having data points indicated with a '"+" sign
and labeled "FRONT" in Figure 2. The hydroccde data shown in Figure 2
will be discussed in a later section.

TABLE I. FRONT FACE AVERAGE OVERPRESSURE, TAYLOR'S METHOD

Time Rarefaction Wave % Reflected Overpressure
(ms) Wave Number* Description Overpressure (kPa)
0.00 - - 100 78.5

4.90 1 Side to Sym Plane 86.9 68.3

5.70 2 Top of Bottom 68.5 53.8

9.80 3 Sym Plane to Side 57.3 45.0

11.4 4 Bottom to Top 52.8 41.5

14.7 5 Side to Sym Plane 50.4 39.6

The time required for the incident shock wave to arrive at the
plant of the back wall is

*Model stops at crossing number 5.
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where D is the S-280 shelter depth, and Wi is the velocity of the

incident shock. For the case under consideration here, D = 2.17 m and
W; = 386.8 m/s, so t; = 5.616 ms. The rise time2 required for the

pressure on the back face to go from ambient at time ty to its peak
average value is
ah
(tb)rise = q ’ 4)
where o = 4.0, and h and c, are defined as before. Here, h = 1.81 m

and ¢, = 340.3 m/s, so (tb)rise = 21.28 ms. The peak average over-

pressure? on the back face is

Bpay = 5 @5 - Py) [1 + Q- s)e's] : (s)
where

(p, - Py)
_1 P 1
B‘? pl E] (6)

or (Eg)max = 29.3 kPa. Because the shock wave considered here is a

step shock, the model in the Technical Manual implies that the average

overpressure on the back face would remain at (Pﬁ)max indefinitely.

The overpressure time-history as computed by using this method is
represented by the solid line labeled "BACK” in Figure 2. Taylor's!
data indicate that the constant o used in Equation (4) to compute the
rise time from the arrival time ty to the time at which the average

overpressure on the back face reaches the value (Eg)max should be -

changed to 2.5 from 4.0. This gives a more rapid pressure rise time
of 13.30 ms on the back face as compared with that computed by using
the model in the Technical Manual. The overpressure-time history for
the S-280 shelter back face as computed by using Taylor's method is
represented by a solid line having data points indicated with a '"+"
sign and labeled '"BACK" in Figure 2. Figure 3 shows the time-history
of the average pressure difference between the front and back faces
of the S-280 shelter using the methods outlined by Taylor and in the
Technical Manual. The hydrocode data shown in Figure 3 will be
discussed in a later section.

Taylor does not suggest an improved method for computing the
average overpressure on the top and side faces of an object such as
the $-280 shelter. The method outlined in the Technical Manual is
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presented here for comparison with the computed hydrodynamic computer
code results. From the time t = 0.0 s, when the incident shock wave
reaches the plane of the front face of the target, to the time td at

which the shock wave reaches the plane of the back face, the average
overpressure on the top face varies linearly? from zero to

2
- P2 = Py
Plop <p2 - pl) 0.9 +0.1(1.0 - =) | (7)

Using the values for the reference case, ﬁ:op = 32.5 kPa at ty = 5.616 ms.

Because of vortex growth, shedding, and subsequent travel down the top
face, the average overpressure is said to reach a local minimum at time

SD
tpmin = W ’ (8)

which for this case is 28.08 ms. At that time, the average overpressure
on the top face is computed? as either

- pz = pl h 1/3
ptop = (pz - pl) 2.0 - ——p;-—'l' 1 B ’ (9.1)
or
2
- . Py~ P
Piop ° <p2 - pl) 0.5+ 0.125 {2 - S |, (9.2)

whichever is the lesser of the two. At this time, s:op = 25.2 kPa for

the S-280 shelter. After this time, there is a linear rise in the
average overpressure to a value

p;op “P2 - Py (10)

from the time tpmin to a time
15 D

tpmin * wi * (11)

For the present case, t = 98.28 ms and E:op = 34,5 kPa, the incident

shock overpressure. According to the method outlined in the Technical
Manual, the geometry of the S-280 shelter is such that the times and
average overpressures for the top face also apply directly to the side
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face of the shelter. Figures 4 and 5 show the overpressure-time
history for the top and side faces, respectively, of the S-280
shelter being struck by the 34.5 kPa overpressure step shock wave as

computed by using the above method. The hydrocode data and the proposed
model shown in those figures will be discussed later.

IV. HYDROCODES

Until relatively recently, methods such as those outlined in the
Technical Manual were the accepted means for calculating the loading on
a structure being struck by a shock wave. Taylor! pointed out the more
serious deficiences in the simple model being used, particularly the
poor modeling of three-dimensiona! effects, and suggested a simple but
quite effective model based on wave interactions. A more generalized
version of Taylor's wave interaction model has since been adapted in
the TRUCK code by Hobbs, et al3. Two significant features of this
model are the ability to model oblique loading and more complex target
shapes.

However, it was apparent that a more general and accurate computa-
tional model than that offered by the simple models was needed. At the
time of Taylor's! paper, hydrodynamic computer codes capable of solving
the Euler equations (and in limited cases the Navier-Stokes equations)
for two-dimensional flow were fairly well established. Significant
advances were also being made in the development of hydrcdynmamic
computer codes capable of solving three-dimensional problems, particu-
larly at the Los Alamos Scientific Laboratory (LASL), and specifically
with the implicit, arbitrary-Lagrangian-Eulerian (ALE) hydrocode BAALY.
The computing methods used in BAAL are described for two-dimensional
flow by Hirt, Amsden, and Cook3, and also by Amsden and Hirt®. The

3gobbs, N. P., Walsh, J. P., Zartarian, G., Lee, W. N., and Wu, Y.,
"TRUCK - A Digital Computer Program for Calculating the Response of
Army Vehicles to Blast Waves," Contract Report ARBRL-CR-00369, U.S.
Army Armament Research and Development Cbnmun@, Ballistic Research
Laboratory, Aberdeen Proving Ground, MD (April 1978).

“Pracht, W. E. and Brackbill, J. U., "BAAL: A Code for Calculating Three-
Dimensional Fluid Flows at all Speeds with an Eulerian-Lagrangian
Computing Mesh", LA-6342, Los Alamos Scientific Laboratory, Los Alamos,

New Mexico (August 1976).

SHirt, C. W., Ameden, A. A., and Cook, J. L, "An Arbitrary Lagrangian-
Eulerian Computing Method for all Flow Speeds", J. Comp. Phys., 14,
227-253 (1974).

6Amsden, A. A. and Hirt, C. W., "YAQUI: An Arbitary Lagrangian-
Eulerian Computer Program for Fluid Flow at all Speeds", LA-5100,

Loe Alamos Seientific Laboratory, Los Alamos, New Mexico (March 1973).
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extension of these methods to three-dimensional flow is described by
Pracht”. As a result of discussions with representatives of the
Ballistic Research Laboratory (BRL), LASL was contracted to perform a
computation using the BAAL hydrocode, simulating the three-dimensional
shock diffraction loading experiment performed by Taylor at the BRL
using a solid rectangular parallelepiped as a target. The results of
this computation are reported in detail by Gentry, Stein, and Hirt$,
and later in the open literature by Stein, Gentry, and Hirt? along with
a more detailed discussion of the solution technique. Briefly, the BAAL
calculation involved a solution of the inviscid Euler equations, with
artificial viscosity used to stabilize flow in regions of deceleration.
The BAAL code has the capability of solving the full Navier-Stokes
equations. In general, the BAAL computation showed excellent agreement
with the experimental pressure data for both the front and back faces.
Experimental data were not taken on the top and side faces. As a
result of the confidence gained in the BAAL code from this comparison,
LASL was contracted to perform a second computation, this time for an
S-280 Electrical Equipment Shelter being struck by a 34.5 kPa (5.0 psi)
step shock wave, the reference case discussed earlier. The results of
this computation are reported in detail by Lotterol®. Using the data
generated in the BAAL computationl® for the 34.5 kPa overpressure

shock wave diffracting over the S5-280 shelter, and using a simple
scaling model suggested by the BRL to extrapolate the 34.5 kPa data

to estimate pressure-time histories for other comparable shock over-
pressures, Calligeros et alll predicted $-280 shelter responses for

"Pracht, W. E., "Calculating Three-Dimensional Fluid Flowe at all Speeds
with an Eulerian-Lagrangian Computing Mesh”, J. Cormp. Phys. 17,
132-159 (1975),

8Gentry, R. A., Stein, L. R., and Hirt, C. W., "Three-Dimensional
Computer Analysis of Shock Loads on a Simple Structure”, Contract
Report BRL-CR-219, U.S. Army Ballistic Research Laboratory, Aberdeen
Proving Ground, MD (March 1975).

9stein, L. R., Gentry, R. A., and Hirt, C. W., "Computational Simulction
of Transient Blast Loading on Three-Dimensional Structures”, Computer
Methods in Applied Mechanics and Engineering 11, §7-74 (1977).

Wrottero, R. E., "Computational Predictions of Shock Diffraction
Loading on an S-280 Electrical Equipment Shelter'" BRL-MR-2599, U.S.
Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD
(March 1976). '

iiCalligeros, J. M., Walsh, /. P., and Y-ghiayan, R. P., "Structural
Modeling and Respomse of Command, Control, and Communications Shelter
Systems for Event Dice Throw", KA~TR-151, (May 1978) KAMAN AVIDYNE,
Burlington, MA, Prepared under Contract No. DAADOS-74-C~0744, to be
published as a BRL Contract Report.
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various shock waves for Event Dice Throw. Ethridgel? has used the
results from References 1, 9, and 10 together with experimental data

to construct correlation functions for blast diffraction loading on the
front and rear surfaces of a rectangular parallelepiped.

During approximately the same time period that the three-dimensional

BAAL computations were being run, a three-dimensional capability was
being added to the HULL!3 hydrodynamic computer code at the U.S. Air

Force Weapons Laboratory (AFWL). The major differences between the HULL

hydrocode and the BAAL hydrocode are that, for a hydrodynamic problem
such as the one discussed here, HULL solves only the inviscid Euler
equations, utilizes an explicit finite difference algorithm, and is
restricted to a fully Eulerian computing mesh comprised of cells which
are rectangular parallelepipeds. The AFWL wished to verify the new
three- dimensional HULL against existing experimental data or proven
codes. The BRL wished to gain access to another reliable three-dimen-
sional hydrocode, as it appeared that BAAL might not be immediately
available for production work. The AFWL supplied the computing
facilities and the three-dimensional HULL code; the BRL supplied the
test problem and the analysis of the hydrocode output.

The problem chosen for the HULL computation was the reference
problem described earlier, identical to that run in the second BAAL
computationl? including the flow field grid formulation. This was
chosen to gain corroboration for the BAAL computation for the S-280
shelter in time for Event Dice Throw.

V. LOADING ON SHELTER FACES

Because the HULL and BAAL codes use different conventions for
naming directions and indices, the BAAL results and the flow field
diagram are reproduced in part using the HULL hydrocode conventions.
Figure 6 shows a three-dimensional view of the shelter in the computa-
tional flow field.

While there is just one BAAL computation for the S5-280 shelter,
there are two complete HULL computations, designated HULL 19.8063
(hereafter referred to as HULL A) and HULL 19.8067 (hereafter referred
to as HULL B). There is also an earlier incomplete HULL computation,

12pthpidge, N. H., "Blast Diffraction Loading on the Front and Rear
Surfaces of a Rectangular Para’lelepiped", BRL-MR-2784, U.S. Army

Ballistic Research Laboratory, Aberdeen Proving Ground, MD (Sep 1977).

13fmy, M. A., Durret, R. E., Ganong, G. F., Matuska, D. A., Stucker,
M.D., Chambers, B. S., Needham, C. =., and Westmoreland, C. D., "The
HULL Bydrodynamics Computer Code", AFWL-TR-76-183, U.S. Air Force
Weapons Laboratory, Kirtland Air Force Base, IM (Sep 1977).




designated HULL 202.1 (hereafter referred to as HULL C i
some interesting features. All three HULL runs are fol’tﬁza:aggngifgskpa
step shock wave. The initial formulations of the four computations are
sgmmar1zed in Table II. Analysis by the BRL revealed that the computa-
tion for HULL C was not valid after 19 ms simulated problem time

because of the arrival of an artificial wave at the front face. The
ref}e?ted wave from the front face had traveled upstream, eventually
arriving at the upstream transmissive boundary through which the HULL
code had been feeding the step shock. Because the algorithm for the
upstreanm transmissive boundary was formulated to function as a simple
positive image boundary, the initially constant input wave was greatly
modified by the arriving compression wave and its following expansion
wave. Ultimately this artificial interaction at the upstream transmission
boundary caused the incoming, originally steady, wave to be almost
completely turned off, with the artificial wave arriving at the front
face by 19 ms simulated problem time. With the information from the
analysis of HULL C and from extensive analyses of other problems by AFWL,
significant improvements to 3-D HULL were made by AFWL. The problems
labeled HULL A and HULL B were run at AFWL in a cooperative effort by
the BRL and AFWL using the improved 3-D HULL. These two HULL runs are
identical with one another in all respects except that for HULL A the
shock is started at seven flow field cells upstream of the S5-280

shelter front face, whereas for HULL B the shock is started at the front
face of the shelter, as was the case for the BAAL run and for HULL C.
Artificial viscosity was employed for both the BAAL run and HULL C; no
artificial viscosity was used in HULL A or HULL B. Also, HULL C was Tun
with a Courant-Friedrichs-Lewy (CFL) stability factor n = 0.15, while
both HULL A and HULL B used n = 0.50.

Figure 7 shows a comparative plot of the average overpressure on
the front face of the S-280 shelter as computed by BAAL; HULL runs A,
B, and C; the Technical Manual; and Taylor's model. The two simple
models both show the theoretical peak overpressure of 78.5 kPa at time
zero. The first data point for the BAAL computation is at t = 1.57 ms,
showing an average overpressure of 74.3 kPa for the front face, 5.4%
below the theoretical peak value. No pressure data prior to this time
were furnished to the BRL, and hence the character of the BAAL computa-
tion from 0 <t < 1.571 ms is unknown. HULL C is the HULL computation
that most closely resembles the BAAL computation in its general nature.
These two computations use essentially the same grid; they are ?oyh
started with the shock at the front. face. Both computations utilize
a form of artificial viscosity, applying it only in regions of -
deceleration, although the actual from of the BAAL viscosity fungtlon
is different from that used in the HULL code}". As may be seen 1n
Figure 7, the HULL C computation appears to be quite stable from time

T%Zynn, P. W., Happ, H. J., III, and Needham, C. E., "Development of an
Artificial Viscosity Function”, AFWL-TR-77-53, U.S. Air Force
Weapons Laboratory, Kirtland Air Force Base, WM (Sep 1977).
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zero up to 19 ms, after which the solution drops off significantly due
to the arrival of the artificial wave discussed earlier. The computation
after 19 ms is not plotted. The HULL C computation reaches a peak
average overpressure of approximately 69.0 kPa at 1.3 ms, 12.1% below
the theoretical peak. From a time of 2.5 ms to 17 ms, the BAAL and
HULL C computations are nearly identical. After this time, the BAAL
computation tends to rise to values above the others, whereas the HULL C
gomputation begins to converge with the other HULL computations until it
is destroyed by the artificial wave. The agreement between the HULL C
and BAAL runs is quite remarkable, particularly so because the HULL code
is using a computational grid designed for BAAL. Normally, the HULL
code uses grids in which the cell-to-cell variation in size is kept
below 5 to 10% in the region where the solution is desired, or in any
region through which a wave must pass on its way to the region where the
solution is desired. The BAAL grid has cell-to-cell variations in size
on the shelter face of 25% for each cell in the X direction, and as
large as 25% for most cells in the Y and Z directions, with much larger
variations in the general flow field away from the shelter. As
indicated in Reference 10, the excellent agreement between the experi-
mentally measured average overpressure and the average overpressure
computed by using BAAL for the front face of a rectangular parallelepi-
ped, using a similar grid, gives reason for confidence in the validity
of the BAAL computation for the S-280 shelter front face, except for
late time where it seems high and for pressure anomalies at the edges

of the front facelO.

The next comparison of interest in Figure 7 is that of HULL C with
HULL B. These two computations are identical with one another in all
respects except that HULL B uses n = 0.50 and no artificial viscosity,
and HULL C uses n = 0.15 with artificial viscosity turned on. There are
significant differences between the two computations in the early
diffraction phase. The HULL B computation shows an overshoot of average
overpressure to a peak value at 1.0 ms of 88.5 kPa, 12.7% above the peak
theoretical value of 78.5 kPa, and 28.2% above the peak average over-
pressure of 69.0 kPa at 1.3 ms in the HULL C computation. The HULL B
computation also shows significant oscillation about the results of
the HULL C computation for t < 6 ms. It is doubtful that the higher
CFL number for HULL B is the primary cause of this oscillation; it is
most likely due to running the code without artificial viscosity
combined with having the shock started as a discontinuity at the shelter
front face. It is of interest to note that at 1.6 ms (the HULL B
datum closest in time to the first datum of the BAAL computation at
1.571 ms) the HULL B computation shows an average overpressure of 76.4
kPa, 2.7% below the theoretical peak reflected overpressure of 78.5 kPa.

The set-up of the HULL A computation is identical with the HULL B
computation except that the HULL A computation begins with the shock
located seven flow field cells upstream of the $-280 shelter front face.
As may be seen in Figure 7, the movement of the shock through those
seven flow field cells results in a significantly different average
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overpressure-time history on the shelter front face for HULL A as
compared with HULL B. Signals from the computational shock in HULL A,
spatially in the form of a forward, exponentially decreasing function,
arrive well ahead of the theoretical shock arrival time. These early
signals are then reflected back continuously into the main portion of
the oncoming computational shock wave, ultimately reducing the peak
overpressure, and delaying and spreading it in time. The peak average
overpressure for HULL A is 69.0 kPa, 12.1% below the theoretical peak,
occurring at 4.35 ms after the theoretical arrival time of the shock
wave at the front face. By 4.35 ms, the theoretical location of the
shock wave is actually 1.68 m downstream of the front face, 77.5% of
the distance to the plane of the back face. Gentry® et al show the same
qualitative effect in comparing the results of a BAAL computation for a
step shock started at the front face of a rectangular parallelepiped
with that for an identical shock in the same grid started five flow
field cells upstream of the front face. The almost exact agreement in
peak average overpressure for the shelter front face between HULL C and
A is most likely coincidental; the effect manifesting itself in HULL A
is numerical diffusion caused by utilizing a CFL number less than 1.0
and by using a highly non-uniform grid. The X direction cell-to-cell
variation between the seventh and sixth cells upstream of the shelter
front face is 45.0%. The early time effects in HULL C governing the
development of the peak average overpressure on the front face are due
almost entirely to the effects of the modifications via artificial -
viscosity to the pressure differencel“,15 used to compute the accelera-
tions in the Lagrangian phase of the HULL computation!3. The HULL A
and HULL B computations converge with one another by 20 ms, as should
be expected. The HULL C computation appears to have been tending
toward converging with the other HULL computations just prior to its
being destroyed by the artificial wave discussed earlier.

The solutions obtained by using the method outlined in the
Technical Manual and that suggested by Taylor! are also shown in
Figure 7. All six average overpressure-time history solutions suggest
that the wave interaction, or diffraction, phase on the front face
lasts for about 15 ms, and is then followed by the drag phase. The
Technical Manual solution for the diffraction phase is significantly
different from all of the other solutions, with the one exception of
being nearly identical to Taylor's solution in the early part of the
diffraction phase. It agrees well with the HULL B solution thioughout
the drag phase, with the BAAL and HULL C solutions in the earl; drag
phase, and with the HULL A solution shortly after the beginning of the
drag phase. The solution using Taylor's model, although it is somewhat
high, shows good agreement with the hydrocode solutions throughout the
diffraction phase, except for regions where the hydrocode solutions
show the questionable behavior discussed earlier. This good agreement, }

15 chtmyer, R. D. and Morton, K. W., "Difference Methods for Initial
Value Problems", Second Edition, Interscience Publishers, Inc, lNew
York, Hew York, 1967, pp 311-317,
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coupled with the ease with which the method may be applied, make
Taylor's method most attractive for estimating front face diffraction
loading. Taylor's solution for the drag phase is consistently above all
of the others, except for the late-time BAAL solution. Both Taylor's
method and the Technical Manual's method are exact for t < 0.

Figure 8 shows a comparative plot of the average overpressure on
the back face of the S-280 shelter as computed by BAAL, HULL runs A and
B, the Technical Manual, Taylor's! suggested improvement to the Technical
Manual model, and a proposed simple model. There is excellent agreement
between the three hydrocode computations. The two existing simple
models!,2 show significantly different results from the hydrocodes,
particularly the model from the Te-~hnical Manual. As indicated in
Reference 8, the average overpressure on the back face in the BAAL
computation for the rectangular parallelepiped agrees quite well with
the experimentally measured average overpressure. This led to the
conclusion that the average overpressure on the back face of the S§-280
shelter as computed by using BAAL may also be considered to be an
accurate estimate. This conclusion is strongly reinforced by the
agreement shown by HULL runs A and B. The three hydrocode computations
show a significantly faster rise time required to reach the peak
average overpressure, and that the peak itself is significantly higher
than that predicted by the simple models. The hydrocodes also indicate
a local pressure peak around 19 ms, most likely due to the interaction
with one another of the weakened shocks breaking over the top and around
the side faces.

It is a fairly direct matter to modify the existing model for
average overpressure on the back face to better fit the hydrocode
results, at least for this case. As before, Equation (3) gives

ty = 5.62 ms, with E; = 0.0 for t <t . It is proposed that the

constant a in Equation (4) be modified so that a = 2. The modified rise
time is then (tb)Tise

on the back face may be computed by using a modified version of
Equation (5),

= 10.64 ms. The peak average overpressure

(P pax = Py (%)[1 + (I-S)e'"e] , (12)
with a proposed value
‘n=-1
n= -z,

with 5{ varying linearly from a value of 0.0 at t = ty to (Eg)max at i

t=1t + (t . For this case, (5; nax = 32-4 kPaat t = 16.3 ms.

d b)rise
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. As w%th the model for the top face, there is a decompression phase
: lasting from ' ’

(2.5)h
[td * (tb)rise] <t< [}b * (tb)rise * cl) ] ? (13)
1 : where Fpg) varies linearly from (53 max tO the value (ﬁg)drag. This

value is found by substituting n = 0 into Equation (12), so that

- - 1

(pg)drag - p*(t)b (7) (2-6) ) (14)
This, for the step shock considered here, then represents (Eg) for all

2.5h

t2ft, + (tb)rise + & | For the 34.5 kPa step shock on the S-280

drag = 31,5 kPa for t = 29.6 ms. This modified simple

model is shown in Figure 8. It fits the hydrocode data well, but its
generality, like that of the simple model on which it is based, may be
questionable.

shelter, (ﬁg)

It is appropriate at this time to refer back to the BAAL and HULL B
plots of overpressure versus time in Figure 2 and the net loading plots
shown in Figure 3.  There are several reasons why only the BAAL and
HULL B computations are chosen for comparison. The HULL C solution
for the front face is valid only up to 19 ms, as discussed in detail
earlier; the solution for the back face is no longer available, but in
view of the problems associated with this computation, it would
probably be of limited value. The HULL A solution shows significant

. deviation from the other hydrocode solutions, most likely due to the
diffusion of the computational shock after its having been started seven
cells upstream of the shelter front face. Both the BAAL and HULL B
solutions start with the computational shock at the front face.

A 4 i aa
L i e

A An important point stressed by Taylor! is that the method outlined
;| in the Technical Manual significantly overestimates the net loading on

a three-dimensional target, with net loading defined as the average
overpressure on the front face minus that on the back face. Taylor's
model predicts a significantly lower net load on the S-280 shelter than
does the Technical Manual model, as pointed out earlier in Figure 3 and
its accompanying discussion. As shown in Figure 2, except for the BAAL

computation later in the drag phase (t > 20 ms) and the HULL B :
computation near t = 0, both hydrocode solutions are consistently H
below the front face arerage overpressure predicted by either Taylor's {

model or the Technical Manual model. Conversely, both hydrocode .
solutions for the back face indicate that the back face is loaded more

rapidly than even Taylor suggests, peaking and remaining at average 4
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overpressure values consistently and significantly above those predicted
by either of the two models for all of the time represented here.

Viewed together, the front and back face loadings from the hydrocode
solutions show a greatly reduced net load on the S-280 shelter, as may
be seen in Figure 3. The curves in Figure 3 suggest that the diffraction
phase for the entire S-280 shelter is essentially over by 20 to 25 ms,
or approximately four crossing times. During that diffraction phase,
both hydrocode solutions show significantly less net loading than that
predicted by Taylor!, which is in turn significantly less than that
predicted by using the model in the Technical Manual. The implication
is that the whole body response of a three-dimensional target during the
diffraction phase (which can be relatively long as compared with a
single crossing time based on the depth of the structure) may be signif-
icantly less than the simple models predict.

By 25 ms, the net loadings from each of the two hydrocode solutions
shown in Figure 3 have begun to diverge from one another, with the HULL B
solution rising as time increases but remaining well below both of the
simple model solutions, and the BAAL solution eventually rising above
all of the others. This may be an artifact of the BAAL computation, but
that is yet to be determined. From Figure 3 it may be inferred that the
drag phase for the structure as a whole begins at 20 to 25 ms. For shock
overpressures at which a structure such as the $-280 shelter would rema’n
structurally functional as a result of the loading during the diffraction
phase, it can be that the loading during the drag phase will determine
whether or not the structure will be overturned, and hence "killed". Yet
it is during the drag phase that the very limited computational and
semiempirical data that are available, such as are shown in Figure 3,
show significant disagreement. Additional experimental and computational
data in the drag phase for three-dimensional structures are needed in
order that the loading during this phase be better quantified.

Figure 4 shows a comparative plot of the average overpressure on
the top face of the S-280 shelter as computed by BAAL, HULL runs A and
B, the Technical Manual, and a proposed simple model. There is excelient
agreement between the BAAL and HULL B computations throughout the range
of simulated time. The HULL A computation agrees quite well with the
other two hydrocode computations for 0 <t <7 ms, and for t > 16 ms.
For 7 <t < 16 ms, the HULL A solution shows a higher, delayed peak than
do the other computations. This is most likely caused by the delayed,
extended, and less severe reflection that the HULL A computation shows
for the front face. The HULL A computation also shows some top face
loading for t < 0 ms, indicating the arrival of the forward portion of
the computational shock ahead of the theoretical shock arrival time.

The solid line in Figure 4 represents the average overpressure for
the top face as computed by using the model suggested in the Technical
Manual. The agreement with the hydrocodes for the first 6 ms, approxi-
mately equal to the .ime required for the theoretical shock wave to
travel along the top face, is excellent. However, the model underpredicts
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the peak average overpressure computed by the hydrocodes, and sihows poor
agreement for t > 6 ms. As was done for the models for the back face,
the Technical Manual model for the top and side faces can be modified
without much difficulty to give excellent agreement with the hydrocode
results. These proposed changes follow below.

It is proposed that the following modified version of Equation (7)
be used as a basis for computing the average overpressure on the top
face,

2

P* ) = ).A+(l A) 1.0 p—z—:—p-l- (15)
(Prop) = (P2 - Py - 05 ,

where A is a constant whose value depends on whether the maximum, local
minimum, or drag phase overpressure is to be computed. After a delay
time ty as defined in Equation (3), the maximum average overpressure on

_* - . -
the top face, (ptop)max’ is computed by setting A = 1, so that
Equation (15) reduces to

(E:op)max = (PZ - Pl) : (16)

From time t = 0 to t = tys the average overpressure increases linearly

From time t = t, to a time

from zero to (5:op)max’ d

2.0D
(t,. ) . =t, += an
top’ pmin d A ’

the average overpressure on the top faces decreases linearly from

p;op)max to a value (Etop)pmin’ which is computed by setting A = 0.6
in Equation (15). From time (ttop)pmin to a time
1.5D
= . : 18
(ttop)drag (ttop)pmln * W, (18)

the average overpressure on the top face increases linearly from
p* p* which is computed by setting A = 0.8
(ptop)pmin to a value (ptop)drag’ : mp Y g )

in Equation (15); after this time the average overpressure remains at
Thus, instead of dealing with several different equations

*
ptop)drag' .
as suggested in the Technical Manual?, it is only necessary to deal with
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an equation of the form of Equation (15), with A = 1.0 for the maximum,

A = 0.6 for the minimum, and A = 0.8 for the drag phase average over-

pressures. For the S-280 shelter considered here, the simple model
roposed above predicts p* = 0.0 k tt=0, p* =

:tor o P iy ‘) ptop ) Pa a 0.0 s, (ptop)max 34.5 kPa
t =5 ms, (ptop pmin = 6.7 kPa at (ttop)pmin = 16.8 ms, and

(ptop)drag = 30.6 kPa for t > (ttop)drag = 25.3 ms. The average over-

pressure-time history for the top face as predicted by the modified
model proposed above is shown on Figure 4.

Figure 5 shows a comparative plot of the average overpressure on
the side face of the S$-280 shelter as computed by BAAL, HULL runs A and
B, the Technical Manual, and the proposed simple model. The proposed
simple model, being a modification of the Technical Manual model, is
also to be used for both the top and side faces for the S-280 shelter.
Because of the geometry of the S-280 shelter, the side face is nearly
equivalent in size to the one-half of the top face that is actually
similated in the hydrocode solutions, and because they have similar
orientations in the flow field, the hydrocode solutions for the side
face are nearly identical with those for the top face. Therefore, the
same general comments regarding the relative performance of the hydro-
codes and simple models for the top face loading also apply to the side
face loading. As noted for the modified model proposed for the back
face loading, the generality of this proposed modified model may also
be limited.

VI. ROTATIONAL MOMENT

None of the simple models provide any information concerning the
locations of the centers-of-overpressure on the surfaces of a target as
a function of time; the wave interaction models could provide such
estimates. The TRUCK code3, which discretizes surfaces for its wave
interaction computations, does provide this capability. To the extent
of the credibility of the hydrocodes and the solutions gained by their
use, such information is readily available!?, Figure 9 shows the time-
history of the Z location of the center-of-overpressure for the S-280
shelter front face as computed by BAAL, and by HULL runs A and B. The
three hydrocode solutions show remarkable agreement with one another,
although the slight differences do seem to be systematic. The center-
of-overpressure stays quite close to half way up the front face for
nearly all of the simulated time, except for a slight movement downward
during the early part of the diffraction phase. Figure 10 shows the
time-history of the Z location of the center-of-overpressure for the
S-280 shelter back face as computed by the same three hydrocode runs.
The back face shows considerable variation in the location of the center-
of -overpressure during the diffraction phase. Prior to the arrival of
the shock wave, the center-of-overpressure is arbitrarily defined as
being at one-half of the height of the shelter; during that time, the
average overpressure is zero by definition. The HULL A plot indicates
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the arrival of the forward section of the computational shock prior to
the theoretical arrival time of t = 5.62 ms at the plane of the back
face. '

The center-of-overpressure histories on the shelter front and back
faces take on added significance when considered in conjunction with the
average overpressure histories on the respective faces, just as the
average loadings on the front and back faces do when looked at together
in Figures 2 and 3. The simple models!»2 predict higher loading on the
front face than do the hydrocodes. For lack of a better estimate, it
would probably be reasonable to use the centroid of the target face for
the location of the center-of-overpressure for use with the simple model
solutions for both the front and back faces. The hydrocodes indicate
that such an approximation would be reasonable for the front face, but
not so for the diffraction phase on the back face. During the early
part of the diffraction phase, the hydrocodes predict a significantly
greater average overpressure on the back face than do the simple
models!s 2, acting considerably above the mid-point on the back face.
During the remainder of the time simulated by the hydrocodes, the
computed loading is still well above that predicted by the simple models,
but with the center-of-overpressure near the area centroid. Specifically,
an average of the BAAL and HULL B average overpressure on the back face
over the time interval 6.6 < t < 15.8 ms is 151% greater than that
predicted by the Technical Manual, and 57% greater than that predicted
by Taylor's model. For the time interval 17.2 < t < 33.4 ms, the two
hydrocode solutions average 30% greater than the Technical Manual and
8.7% greater than Taylor's model. The time-histories of the net rota-
tional moment due to overpressure on the 5-280 shelter about a line in
the plane of the bottom boundary and perpendicular to the side face as
computed by using BAAL, HULL B, and each of *he two simple models are
shown in Figure 11. As was the case for the net loading curves in
Figure 3, Taylor's model! yields rotational moments larger than those
for the Technical Manual very early in the diffraction phase and also
in the drag phase, but significantly smaller values throughout the
majority of the diffraction phase. The HULL B computation shows the
oscillation in the solutions in the early diffraction phase discussed
earlier. For 4 € t < 20 ms the HULL B and BAAL solutions show
excellent agreement with one another, predicting values well below
those for the simple models. During that time interval, the hydrocodes
average 47% below that predicted by the Technical Manual, and 31% below
that predicted by Taylor's model. For t > 20 ms, the BAAL and HULL B
solutions diverge significantly from one another. By 33.1 ms, the HULL B
computation has reached a net rotational moment due to overpressure of
55.0 kN-m, 20.3% below the Technical Manual model's value of 69.0 kN-m,
and 33.5% below the value of 82.7 kN-m obtained by using Taylor's model.
By 33.6 ms, the BAAL computation has reached a net rotational moment ]
due to overpressure 97.8 kN-m, 41.7% above the value from the
Technical Manual model, 19.3% above the value from Taylor's model, and
77.8% above the value from the HULL B computation at 33.1 ms. The
reason for this divergence is two-fold. The BAAL computation shows
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significantly higher late-time overpressure on the S-280 shelter front
face than does the HULL B computation, as shown in Figure 7, with a
center-of-overpressure consistently above that for the HULL B
computation, as shown in Figure 9. Conversely, the BAAL computation
shows only somewhat higher late-time overpressure on the S5-280 shelter
back face then does the HULL B computation, as shown in Figure 8; it
has a center-of-overpressure consistently below that for the HULL B
computation, as shown in Figure 10. At least part of the reason for
this difference in behavior between the two hydrocode solutions is the
apparent anomalous behavior in the BAAL solution discussed in Reference
10.

VII. CONCLUSION

In general, the hydrocodes show good agreement with one another in
predicting overpressure averaged over each of the given faces of the
S-280 Electrical Equipment Shelter. They are also useful as a comparative
tool in evaluating the ability of the relatively simple models discussed
here to predict such loading. Additionally, the hydrocodes provide a
great deal of information for which predictive models are not available
and which is not readily gathered experimentally. An example of this
is the use of the data from the hydrocodes to make accurate estimates
of the time-history of the center-of-overpressure for use in computing
rotational moments. Also, the analysis of the various hydrocode
results discussed in this report has allowed some quantification of the
effects of such items as the value of the CFL number, numerical
diffusion caused by the finite difference grid, and artificial viscosity.

The model outlined in the Technical Manual does not appear to be
suitable for predicting either the shock diffraction or the drag phase
loading on a three-dimensional structure such as the S-280 Electrical
Equipment Shelter. The front face loading prediction for the drag
phase seems to be too high; the prediction for the drag phase appears
to be reasonable. The prediction for the back face loading is too low,
and is made worse by predicting too long a rise time needed for over-
pressure to go from zero to the predicted drag phase value. The models
for predicting the loading on the top and side faces are fairly good in
predicting the initial increase in overpressure with time, but under-
estimate the peak value to which the overpressure rises; thereafter,
the models appear to be significantly in error.

Taylor's method! for estimating the loading on the front of a
three-dimensional structure is a significant improvement over the model
suggested in the Technical Manual, particularly during the diffraction
phase; it appears to be somewhat high as compared with the hydrocode
predictions for the drag phase. The change suggested by Taylor to be
applied to the Technical Manual model for the back face loading is an
improvement, but it too underpredicts the loading for all time, missing
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the peak overpressure and overestimating the time required to reach the

predicted peak overpressure. Taylor did not address the top and side
face loading.

The empirical models suggested by Ethridge!2 provide a quick and
fairly accurate means of estimating the average overpressure as a
function of time on both the front and back faces of a rectangular
parallelepiped. The modifications to the models in the Technical Manual
for the back, top, and side faces of a rectangular parallelepiped
proposed in this report also provide a quick, accurate means of estimating
average overpressure, with the added feature of providing some of the
detailed loading variations observed in the hydrocode computations.

The simple models do not provide a means for computing the time-
history of the center-of-overpressure on the various faces of the
structure. As a result, it is not possible to compute rotational
moments unless assumptions are made concerning the location of the center-
of-overpressure. Alternatively, center-of-overpressure models could be
developed. The hydrocodes do provide this information.

The hydrocodes and the simple models all provide conflicting infor-
mation during the drag phase. This late-time loading is important
because it is during this time that overturning either will or will not
take place. Unfortunately, relatively little experimental data have
been gathered for late-time loading. This problem needs to be resolved
both experimentally and computationally. Comparison of late-time
loading obtained via experiment with that from inviscid codes such as
HULL will also be of value in determining whether or not viscous effects
should be modeled.

A more complete analysis may be found in Reference 16.

16r0ttero, R. E., "petailed Comparison of 3-D Hydrqcode Coqputations
for Shock Diffraction Loading on an S-280 Electrical Equipment
Shelcer", BRL-R-( ), U.S. Army Ballistic Research Laboratory,
Aberdeen Proving Ground, MD (to be published).
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LIST OF SYMBOLS
c velocity of sound (m/s)

D the depth (m) of the target, measured in the direction of travel
of the incident shock wave

; h the clearing height (m), equal to the smaller of either the
g height of the target or one-half of its width
y
P static, or side-on, pressure (kPa), absolute unless otherwise
indicated
T static temperature (°K)
t time (s), where t = 0.0 when the incident shock wave arrives at

i e o ety

the target front face, as computed according to theory

u particle velocity (m/s) with respect to an Eulerian reference
frame
W wave velocity (m/s) with respect to an Eulerian reference frame
] X the direction of measure of depth (m)
% Y the direction of measure of width (m)
pA the direction of measure of height (m)
a a constant multiplicative factor

= P Y the ratio of specific heats
¥ } n Courant-Friedrichs-Lewy (CFL) stability factor
;u! ? e static density (kg/ms), absolute unless otherwise indicated
( Subscripts.
b the back face of the target
c clearing time when used with the symbol "t", the "... time

required to clear the front wall of reflection effects?..."

drag the drag phase

£ the front face of the target
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3 max a peak value

 , .

n pmin when used with the symbol "t", the time required for the average
pressure on a target face to reach a local minimum value after
having been loaded to a peak value by a shock wave

rise when used with the symbol "t", the time required for a target face
1 to reach a peak average pressure after the initial arrival of
‘ the incident wave at that face
top the top face of the target
1 ambient, atmospheric, or reference condition, specifically that
region of undisturbed gas ahead of the incoming shock wave
2 the region behind the incident shock wave
3 the region representing the shock tube reservoir
4 the region separated from the shock tube reservoir by the
expansion wave, and separated from the shocked gas by the
contact discontinuity
5 the region behind the reflected shock wave
Superscripts {

*

T

LIST OF SYMBOLS (Cont'd)

incident shock wave

the value over the reference, or ambient condition (e.g., p*
represents overpressure)

average value over a given face of the target

\
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A OBLIQUE INTERACTION OF A SHOCK WAVE WITH A THREE-DIMENSIONAL g
3 TACTICAL COMMUNICATIONS SHELTER

- R. E. Lottero, J. D. Wortman, B. P. Bertrand and C. W. Kitchens, Jr.
: Ballistic Research Laboratory
U.S. Army Armament Research and Development Command
Aberdeen Proving Ground, Maryland 21005

ABSTRACT

Three-dimensional, unsteady finite-difference calculations with the

HULL hydrocode are used to describe the shock diffraction process

resulting from a shock wave striking the front of an $-280 Electrical

Equipment Shelter at oblique incidence. The 52.5° obliquity of the

incident 34.5 kPa (S psi) overpressure shock on the front face produces

a peak reflected overpressure that is approximately 50% larger than

that for normal reflection. The numerical calculations are discussed,

and evaluated by comparison with experimental pressure measurements

taken in shock tube tests on a scale-model shelter. Difficulties are

experienced in both the 3-D calculations and the experiment in resolving g

the peak reflected overpressure on the front face; comparisons for other !

shelter faces show good agreement. Three-dimensional and two-dimensional I

grid convergence studies are discussed which quantify the influence of f

grid size on the numerical results. !

: s

|
l

I. INTRODUCTION

situation for a given structure occurs when the shock strikes its most
vulnerable face at normal incidence. However, it is also known that
when a shock wave with an overpressure < 140 kPa (20.3 psi) strikes a .
target at oblique incidence, the peak reflected overpressure can be !
more than 50% larger than that for normal reflection'. This oblique 1
interaction process is of interest from both fluid dynamic and vulner-
ability viewpoints. The duration and magnitude of the peak reflected
overpressure are functions of the incident shock overpressure, the
angle of incidence between the shock wave and the target face, and the
- ' distance along the target face measured from the leading edge. When

1 the angle of incidence is at the critical Mach angle (to be discussed
later) the reflected overpressure reaches its highest possible value.
For relatively small targets, the enhanced peak reflected overpressure
is difficult to measure experimentally because of its small spatial

It has generally been assumed that the most severe shock loading - f.
j
|
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) e et g = = -

" 1Bertrand, B. P., "Measurements of Weak Shock Wave Reflected Pressure B
Histories on a 2-Dimensional Surface," ARBRL-MR-02966, U.S. Army ¥
Ballistie Research Laboratory, Aberdeem Proving Ground, Maryland ’ '

(October 1979).
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extent and time duration, and the response limitations of pressure
gages. The peak reflected overpressure is difficult to predict with a
hydrodynamic computer code because of the general tendency of such codes,
especially Eulerian codes, to smear discontinuities such as the incident
and reflected shock waves.

The peak overpressure enhancement at obliquity for shock waves with
an overpressure < 140 kPa is of interest because such shock waves cover
a large part of the assumed threat range from tactical nuclear weapons.
The S-280 Electrical Equipment Shelter (henceforth called the S-280
shelter) houses communications equipment for many Army systems, and
will be on the tactical battlefield in large numbers. The S-280 shelter
is currently being hardened to decrease its blast/thermal vulnerability,
and a 34.5 kPa (5.0 psi) overpressure shock wave was chosen for the
present work because it represents a mid-range threat level. At normal
incidence, the peak reflected overpressure for this shock wave is
78.5 kPa (11.4 psi). The critical Mach angle for a 34.5 kPa shock wave
is 52.5°. At that angle, the peak reflected overpressure is estimated!
to be as high as 122 kPa (17.7 psi), 55% greater than the value for
normal incidence.

It is important from a vulnerability viewpoint to determine
whether or not such a peak is of sufficient duration and spatial
extent on the S-280 shelter that a 34.5 kPa overpressure shock wave
represents a greater threat at 52.5° obliquity than at normal incidence.
This is one of the objectives of the present study. A second objective
is to use a combined experimental and computational research program
to verify the three-dimensional shock loading prediction capability of
the HULL2:3 hydrocode currently at the BRL, and assess the practicability
of such calculations.

II. BACKGROUND

This section provides an introduction to oblique shock diffraction.
When an incident shock wave strikes a given face of a rectangular
parallelepiped (such as an S-280 shelter) at some oblique angle, it
also strikes another face at the complement to that angle. The initial
contact between the incident shock wave and the structure occurs at the
corner formed by the intersection of these two faces. This corner
becomes a shock diffraction corner.

2Fry, M. A., Durrett, R. E., Gomong, G. P., Matuska, D. A., Stucker,
M. D., Chambers, B. S., Needham, C. E., and Westmoreland, C. D., "The
BULL Bydrodynamices Computer Code," AFWL-TR-76-183, U.S. Air Force
Weapons Laboratory, Kirtland Air Force Base, WM (September 1376).

SPmy, M. A., Needham, C. E., Stucker, M. D., Chambers, B. S., and
Ganong, G. P., "AFWL HULL Caleculations of Air Blast Over a Dam Slope,"
' AFWL-TR-76-154, U. S. Air Force.Weapons Laboratory, Kirtland Air
Force Base, WM (October 1976). .
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As the divided incident shock travels along the two faces, rar-
efaction waves emanating from the diffraction corner travel along the
faces at the local speed of sound, following each incident shock/surface
intersection point as it moves along the respective face. Depending on
the angle of incidence of the shock on the face, the corner rarefaction
wave will either fall continually farther behind the incident shock/

-, surface intersection point, or it will eventually catch up. The initial
| reflected overpressure experienced at a given point on the surface is
not relieved until the corner rarefaction wave arrives, or similar waves
arrive from other parts of the flow field.

The incident shock wave of interest here is a 34.5 kPa overpressure
shock. Figure 1 shows shock reflection factors (the ratio of the peak
reflected overpressure to the incident overpressure) as a function of
the angle of shock incidence a for this shock strength. The angle at
which the corner rarefaction wave just catches up with the incident
shock/surface intersection point is a-- Regular reflection theory is
valid for 0 € a < ac- The experimental data indicate that the peak
overpressure is reached at oy = 52.5°, the critical Mach angle. At %y

the intersection point between the incident and reflected shocks is on
the verge of lifting off the surface, at which time a Mach stem and
triple point are formed.

Information inferred! by measuring the Mach stem velocity for
a ~ oy indicates that the peak reflected overpressure in this region

may be even larger (122 kPa) than that indicated by the experimental
data in Figure 1. The enhanced peak reflected pressure for a ~ Oy is

of interest from computational and experimental viewpoints, and may
have important implications in blast vulnerability. :

III. EXPERIMENTS

The experiments were conducted in the BRL ) metre (24 inch 0.D.)
shock tube®. A 1/18.45 scale model of the S-280 shelter was constructed
of aluminum, of sufficiently heavy construction that it is essentially
non-responding for the shock wave strengths used here. The model
dimensions are 19.58 cm (width) by 11.38 cm (height) by 11.79 cm
(depth). One of the 19.58 cm by 11.38 cm faces is defined as the front
face. The model was mounted in the shock tube so that the angle a
between the front face and the incident shock wave front was 52.5° %
0.5°. One of the 11.79 cm by 11.38 cm faces is defined as the windward
side face, the angle between that face and the incident shock being 37.5°.

“Coulter, G. A. and Bertrand, B. P., "BRL Shock Tube Facility for the
Simulation of Air Blast Effects," BRL-MR-1685, U.S. Army Ballistic
Research Laboratories, Aberdeen-Proving Ground, MD (August 1965).
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Experimental shots were conducted for various overpressures and
angles of incidence. The two described in Table I will be discussed
here. The angle between the shock front and the shelter front face is
o, p is absolute pressure, T is temperature, and E.1 and E.2 indicate
the shot numbers referred to in this paper.

There were a total of eight pressure gages on the model, mounted
flush to the model surface. Table II shows the gage positions where
pressure measurements will be compared in detail with the hydrocode
computations. The gage locations are given in a primed coordinate
system, having its origin (0., 0., 0.) at the bottom corner of the
leading vertical edge of the model. The front and back faces are
constant X' planes, the side faces constant Y , and the top and bottom
faces constant ZZ . The gage positions are defined by a letter-and-
number pair; the letter denotes the face and the number denotes the
gage position on the face. All gages in shots E.l and E.2 had a
sensitive element diameter of 0.51 cm (.20 in), except gage F2 in shot
E.2, which had a smaller diameter of 0.32 cm (.125 in) and a higher
frequency response than the other gages.

IV. FINITE DIFFERENCE COMPUTATIONS

The airblast version of the HULL2s3 hydrodynamic computer code was
used for the shock diffraction computations. The HULL code currently
in use at the BRL is AFWL version 8, received in September 1978, with
modifications made by the BRL, and by SAIS under contract to the BRL.
Some of the modifications were necessary to run the code on the BRL's

o CDC 7600; others were necessary to convert from using a SAIL® pre-

2 processor for HULL to using a CDC update/SAI-POST preprocessing system.
- Other modifications were added to allow the input of an off-angle step
; shock through any combination of the left, bottom, and aft boundaries
"w of the 3-D computational grid and the left and bottom boundaries of the

2-D Cartesian grid.

The HULL hydrocode uses an explicit time step predictor-corrector
method similar to a Lax-Wendroff’ scheme to solve the inviscid Euler
equations. Detailed descriptions of the differencing method used in i

SHasdal, J. A., Chambers, B. S., and Clemens, R. W., "Support to BRL:
BULL Code Implementation on a CDC 7600, " SAI-80-701-AQ, Science
Applications, Inc., McLean, VA (August 1978).

€Gpaham, D. C., Gaby, L. P., and Rhoades, C. E., "SAIL, An Automated

Approach to Software Development and Management," AFWL Interim Report

1971-6, U.S. Air Force Weapons Laboratory, Kirtiand Air Force Zase, §
WM (October 1976).

"Richtmyer, R. D. and Morton, K. W., "Difference Methods for Initial j

Value Problems," Interscience Publishers, Inc., John Wiley & Soms,
Ine., Second Edition (1967).
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HULL are given in References 2 and 3. The computation is performed in
two phases, a Lagrangian phase where flow field cells perform work on
one another, and an Eulerian phase where material is fluxed across cell
boundaries using a donor cell method.

Table III lists the HULL hydrocode computations described in this
paper. Computation H.1, which matches experiment E.1 in shock strength
and ambient conditions, will be discussed in detail in this and the
next section. The remaining HULL computations, H.2 - H.7, match
experiment E.2. Results from H.2 - H.7 will be discussed in the
section titled "Convergence Study." The Courant-Friedrichs-Lewy
number was 0.5 for all computations; artificial viscosity was not used.

The finite difference grid used for computation H.l contains
92,512 flow field cells, with a 49 x 59 x 32 grid in the X, Y, and Z
directions, respectively. The S-280 shelter model is built using 6,912
nearly cubical rigid cells, with 16 equal X direction cells
(X = .7366 cm), 27 equal Y direction cells (AY = .7253 cm), and 16
equal Z direction cells (AZ = .7112 cm). The rigid cells do not
directly enter the computation. They are used to construct an
obstacle having a perfect reflection surface. A rigid cell does
require the same storage space as a hydrodynamic cell, so this space is
wasted. To minimize the smearing of the computational shock as it
passes through the grid prior to striking the shelter, the shock is
placed well into the grid at the initial mesh generation, 2.66 cm
upstream of the shelter leading edge. The shock input algorithm keeps
track of the theoretical intersection of the shock wave with the
boundaries, vnrogressively moving the input shock along the boundaries
as the comp.tation proceeds. '

Figure 2 shows a top view of an isobar (constant pressure) plot of
the flow field for H.1l in the bottom-most plane of cells after one
computational cycle. (A similar plot is not available at cycle 0.)
Shock arrival time at the shelter leading edge is defined as t = 0.0.
In Figure 2, the incident computational shock is indicated by the
closely-spaced pressure contours. The shock is moving from the lower
left corner of the figure toward the upper right corner. What appears
to be a bent right end of the shock is actually the set of pressure
contour identification numbers which are overwritten by the plot
routine. The contour labelled "1" is not a pressure contour, but is
an artificial use of the contour algorithm to show the outline of the
shelter in this plane.

Figure 3 shows isobars in the same plane at t = 374.9 us; the
shock wave has passed slightly more than half-way across the shelter.
Contour 5 shows the general shape of the reflected shock. Figures 2
and 3 give a qualitative indication of the flow field predicte? by the
3-D HULL hydrocode. The next section provides detailed comparisons
between experiment E.l and HULL computation H.l.
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V. COMPARISON OF COMPUTATIONAL AND EXPERIMENTAL RESULTS

In this section "experiment" refers to experiment E.l, and
"computation" refers to computation H.l1. Computation H.l1 was run on
the BRL's CDC 7600 for 155 computational gycles, with a total job time
of 49 minutes at a cost of $776. ‘

Figure 4 shows a comparison between the measured and the computed
overpressure-time history for gage F2. The gage is located at 3/4 of
the distance along the shelter front face and at 1/4 of the shelter
height from the ground plane. The agreement between the two results is
good, except for the initial shock interaction with the structure.
Because the computational shock is spread over three or four flow field
cells, it shows an earlier initial interaction and a reduced peak®. The
agreement beyond the peak is very good, although the computed overpressure
is slightly greater than that for the experiment for 0.6 € t < 1.0 ms. The
second peak in the experimental data at 1.22 ms is caused by the arrival
of a secondary shock produced by the interaction of the incident shock
with the model; it traveled to the shock tube wall, reflected off the
wall, and returned to strike the model. A similar second peak is seen
in the other comparisons in this section. It should be noted that the
X's on the H.1 curve in this and the next three figures mark every
fifth computed data point; they have been added primarily as a visual
aid.

Figure 4 shows a measured peak reflected overpressure of 86.2 kPa
occurring at .320 ms, and a corresponding computed peak of 76.2 kPa at
.331 ms. The difference in time is due in part to the difficulty in
establishing a zero reference time at the shelter leading edge for the
experiment because of the discrete data sampling rate and the gage
diameter and response time. There are similar computational problems
due to the numerical diffusion of the shock wave as it travels through
the finite difference grid; this causes the peak reflected overpressure
to be reduced and delayed in time®,%,10, It was decided to establish
time-zero estimates for the experiment and the computation independently
and use these to compare the results.

8Lottero, R. E., "Comparison of 3-D Hydrocode Computations for Shock
Diffraction Loading on an S-280 Electrical Equipment Shelter,” to be
published in the proceedings of the 1980 Army Numerical Analysis and
Computers Conference, 20-21 February, 1980, NASA-Ames Research
Center, Moffett Field, CA. , :

SLottero, R. E., "Detailed Comparison of 3-D Bydrocode Computations
for Shock Diffraction Loading on an $-280 Electrical Equipment
Sheltep," to be published as ‘a BRL report, U.S. Army Ballistic
Rere sch Laboratory, Aberdeen Proving Grownd, MD.

10Gentry, R. A., Stein, L. R., and Hirt, C. W., "Three-Dimensional
Computer Analysis of Shock Loads on a Simple Structure,” BRL-CR-219,
U.S. Army Ballistic Research Laboratory, Aberdeen Proving Grownd, MD
(Mareh 1975).
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Neither the measured nor the computed peak reflected overpressure
were near the expected peak of 115 kPa. The measured peak of 86.2 kPa
is 25% less than the expected peak, and 16% greater than the normal
reflection peak. The computed peak is 34% less than the expected peak,
and 3% greater than the normal reflection peak. This is likely due to
the finite gage and cell sizes which are used. In the experiment, the
gage diameter is 2.6% of the span of the fromnt face. In the computation,
the cell dimension in the Y direction on the front face is 3.7% of the
span, 42% larger than the gage diameter. It appears that the spatial
extent of the overpressure peak is so small that it is largely inte-
grated out even with these relatively small units of measure. Thus, it
can be concluded that the overpressure peak does not make a significant
contribution to the loading on the model and hence is not significant to
the S-280 shelter itself. The problem of resolving the peak is still
of interest from a fluid dynamics viewpoint, and will be studied
further in the next section.

Figure 5 shows a comparison between the measured and computed
overpressure-time histories for gage S2, located in the center of the
windward side face. The angle between the shock front and this face is
37.5°. The agreement is good except for the initial shock interaction.
For this angle, the expected peak reflected overpressure is essentially
equal to the normal reflection overpressure of 74.2 kPa. The computa-
tional peak is 77.8 kPa, 5% greater than the normal reflection value
and 7% greater than the measured peak (73.0 kPa), which is in turn 2%
lower than the normal reflection peak. The peak values for this gage
position will be discussed in detail in the next section.

Figure 6 shows a similar comparison for gage Sl1, located at the
center of the leeward side face. It, too, shows a smearing of the
computational shogk, which has also been weakened by a rarefaction wave
produced at the trailing edge of the front face. The general agreement
between the curves is good. They both show a pressure plateau of
22.5 kPa for 0.6 < t < 0.9 ms, caused by the weakened incident shock.
The pressure rise which begins at .9 ms is caused by the incident shock
breaking over the top face, sending another weakened shock down the
leeward side face. The curves agree qualitatively, but the computed
results vary from 5 to 10% less than the experimental results after
.9 ms. It may be that viscous effects, which HULL cannot model, are
becoming important by this time.

Figure 7 shows a similar comparison for back face gage B2. This
gage is located at 3/4 of the distance along the back face, and at 1/4
of the height of the shelter from the ground plane. The agreement
between the computed and the measured results is very good, except at
the time of initial shock arrival (for the same reasons discussed
earlier) and t > 1.0 ms when viscous effects may be important.




Figures 4 through 7 typify the good agreement between the computed
and experimental results over the entire structure, including the top
face. Good agreement is also shown when the overpressure results are
integrated in time to compute overpressure impulse. Those results plus
a more detailed analysis may be found in Reference 11.. '

VI. CONVERGENCE STUDY

Because the expected peak reflected overpressure was not obtained
on the front face (gage position F2) in either the calculations or the
experiment, a convergence study was performed to study the sensitivity
of the peak values to both grid and gage size. It was expected that
smaller grid sizes and smaller gages having higher frequency response
were needed to resolve the small region of enhanced reflected over-
pressure on the front face. Only a limited grid refinement was possible
for the 3-D computational problem because of cost and storage limitations.
Most of the computational results were obtained for a representative 2-D
slice of the grid for H.1l, which then modeled a shelter with infinite
height. Experiment E.2 was performed to study the effect of reduced
gage size (.32 cm) and higher frequency response on the measured front
face peak.

The grid convergence study matching shot E.2 consists of six
computations: H.2 and H.3 (3-D) and H.4-H.7 (2-D). The dimensionless
cell sizes in Table III are normalized by the values of 4&X, 4Y, and 4AZ
on the shelter surface in H.l. The experimental gage sizes are normal-
ized in the same way, using AY from H.1 for the front face gage and 4X
from H.1 for the windward side gage. Figure 8 compares the peak
reflected overpressures obtained at gage position F2 on the front face.
There is a systematic displacement between the 2-D and 3-D results,
apparently due to differences in the finite difference algorithms; this
is currently being studied. The indicated 'expected'" peak overpressures
for E.1 and E.2 are slightly different because of differences in the
incident shock strengths. These expected values are inferred from
Bertrand's experimental measurements!. The experiments showed
essentially no difference in overpressure peaks relative to the expected
values. The computations show that the peak overpressure increases
toward the expected value as grid size approaches zero, but the results
for windward side face gage S2 indicate that part of that increase may
be due to artificial sensitivity of the peak to grid size.

Figure 9 shows the results of the convergence study for gage
position S2. 1In this case, a = 37.5°, and the expected peak over-
pressures are the same as for nbrmal reflection. The qualitative trend

Urottero, R. E., Wortman, J. D., Bertrand, B. P., and Kitchens, C. W.,
"Oblique Interaction of a Shock Wave with a Three-Dimensional Simple
Structure, Part I, to be published as a BRL Report, U.S. Army
Balligtie Research Laboratory, Aberdeen Proving Ground, MD.
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is similar to that shown in Figure 8. The computational results dver-
shoot the expected values by as much as 20% as the grid size is decreased,
indicating an undesirable sensitivity of the peak value to grid size.

This difficulty is being investigated.

VII. CONCLUSIONS

This study has shown that the 3-D HULL hydrocode can produce
accurate shock diffraction loading predictions for this class of
problems at moderate cost. The BRL code version has been modified to
treat an incident step shock moving obliquely through the 2-D and 3-D
Cartesian grids. This allows the modeling of the 32.75 and 34.5 kPa
(nominal S psi) overpressure shocks striking the front face of an S-280
Electrical Equipment Shelter at a 52.5° angle of incidence, using smooth
shelter walls instead of undesirable rough ''stair-stepped" surfaces
formed if the shelter were rotated in the grid. The agreement between
the 3-D computational and experimental results is good on all shelter
faces. Errors of from -12% to -9% (H.1/E.l1 and H.2/E.2, respectively)
are experienced in resolving the peak reflected overpressure on the
front face (F2), and +7% to +8% on the windward side face (S2); error
magnitudes less than 10% are present beyond the peak. A grid convergence
study has quantified the sensitivity of the peak reflected overpressure
to grid size. The expected enhanced peak overpressure on the front
face at 52.5° obliquity proved to be difficult to measure or compute.

It is of such short duration and limited spatial extent that it is
apparently unimportant as a damage mechanism for the S-280 Electrical
Equipment Shelter.
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TABLE I. EXPERIMENTAL SHOTS

Shot Number a _ Ambient Values Shock Overpressure
Actual This Paper (Degrees) p(kPa) T(C) (kPa)
24-79-126 E.l 52.5 101.42 22.25 32.75
24-79-134 E.2 52.5 101.90 2<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>